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Motivations



Motivations

- les données sont (collectées) partout

- idée : utiliser les données pour
o améliorer les connaissances
o répondre à des questions concrètes
o l’aide à la décision

- utile dans tous les domaines

- Ce cours est une première approche de la question

- fait le lien entre stat descriptive et probabilités . . .

- . . . pour l’appliquer à l’estimation

- montre à quoi ça sert => plein de nouvelles connaissances. . .

- . . . qui seront complétées au second semestre avec l’économétrie.



La démarche statistique

On suppose une population : elle est très large et on ne peut pas l’explorer
totalement ⇒ on travaille sur un échantillon

- La statistique descriptive pour décrire et comprendre un
phénomène

Résumer l’information pour en extraire l’essentiel
Applications dans tous les domaines
Constructions de tableaux, graphiques, indicateurs synthétiques

- La statistique mathématique pour l’aide à la décision
Modélisation et estimation (théorie/pratique)
Inférence statistique (tests) (théorie/pratique)
Déduction sur la population
Applications dans tous les domaines...

- Pour cela on a besoin de la théorie des probabilités
pour construire des échantillons
pour avoir des outils d’estimation et connaı̂tre leurs propriétés



Exemple de questions

Vous jouez à pile ou face et vous comptez le nombre de pile. Vous disposez
d’un échantillon aléatoire de N tirages (X1,X2, . . . ,XN) pour lesquels vous
observez la réalisation de pile (succès codé 1) (x1, x2, . . . , xN).

- la loi de cette expérience est la loi de Bernoulli : donne la probabilité de
succès (p ∈ [0,1]) ou d’échec (1 − p) de l’expérience.

- On suppose que chaque tirage ou variable aléatoire de l’échantillon suit
la même loi de Bernoulli de paramètre p ∈ [0,1] et quelles sont toutes
indépendantes.

- Loi de probabilités de Bernoulli de paramètre p ∈ [0,1] :

P(Xi = k) = pk (1 − p)1−k

avec k = 0,1 (resp. échec, succès).



Exemple de questions

Vous êtes assureur et vous êtes intéressés par le nombre des sinistres sur
une certaine période. Vous disposez d’un échantillon aléatoire de N clients
(X1,X2, . . . ,XN) pour lesquels vous observez le nombre de sinistres réalisés
(x1, x2, . . . , xN).

- On suppose que la loi sous-jacente est la loi de Poisson (loi des
événements rares comme les accidents).

- On suppose que chaque variable aléatoire de l’échantillon suit la même
loi de Poisson et qu’elles sont toutes indépendantes.

- On suppose donc ici que tout le monde a la même probabilité de
sinistres. . . ! ??

- Sa loi de probabilités :

P(Xi = xi) =
λxi e−λ

xi !

avec xi ∈ N.



Les données

- Echantillon = 1 groupe d’observations tirées ”au hasard” dans la
population

- iid = identiquement et indépendamment distribués

- une observation de l’échantillon xi est une réalisation particulière d’une
Variable Aléatoire (VA) Xi

i 1 2 . . . N
X x1 x2 . . . xN

- Une VA mesure quantitativement le résultat d’une expérience aléatoire
grâce à sa loi de probabilités caractérisée par un ou plusieurs
paramètres.

- Ces paramètres sont inconnus, on va donc chercher à les estimer avec
des outils fiables.



Plan du cours

Partie 0 : Rappels des pré-requis :

o sur l’utilisation des sommes

o sur les fonctions usuelles (puissance, exp, ln)

o sur les dérivées

o sur les intégrales

o sur les probabilités

o sur les variables aléatoires

o sur leurs moments théoriques

Pré-requis :

o connaı̂tre ces notions de bases

o savoir reconnaı̂tre les lois de proba classiques

o savoir faire les calculs



Plan du cours

Partie 1 : Les couples de VA : pour étudier les relations entre deux VA.

o couples de VA discrètes

o couples de VA continues

Partie 2 : L’inférence statistique

o Construire des estimateurs

o Étudier leurs propriétés

o Calculer des intervalles de confiance

o Faire des tests



Partie 0 : Rappels



I- Rappels sur les sommes



Jouons avec les sommes et les statdes

Commençons par une définition.

x1 + x2 + x3 + · · ·+ xN−1 + xN =

N∑
i=1

xi

N∑
i=1

xi = x1︸︷︷︸
i=1

+ x2︸︷︷︸
i=2

+ x3︸︷︷︸
i=3

+ . . . + xN−1︸︷︷︸
i=N−1

+ xN︸︷︷︸
i=N



On peut ”couper” une somme comme on veut :

N∑
i=1

xi =

10∑
i=1

xi +

N∑
i=11

xi

=

55∑
i=1

xi +

N∑
i=56

xi

=

22∑
i=1

xi +

27∑
i=23

xi +

N∑
i=28

xi

si bien sûr N ⩾ 11, N ⩾ 56 ou N ⩾ 28.



Une formule utile :

1
N

N∑
i=1

xi =
x1 + x2 + x3 + · · ·+ xN−1 + xN

N
≡ x̄

On reconnaı̂t la moyenne arithmétique. De cette égalité on déduit :

N∑
i=1

xi = Nx̄

(peut être utile parfois pour se ”débarrasser” d’une somme dans une
expression)



Une écriture plus compacte :

4∑
k=0

ak xk = a0x0 + a1x1 + a2x2 + a3x3 + a4x4

= a0 + a1x + a2x2 + a3x3 + a4x4



Même chose pour la multiplication :

n∏
k=1

k = 1 × 2 × 3 × . . . × (n − 1)× n

≡ n!

On reconnaı̂t ici la définition de ”factoriel n” pour n ⩾ 1.

Notons que 0! = 1.

Remarque :

n! = n × (n − 1)× (n − 2)× (n − 3)× · · · × 2 × 1︸ ︷︷ ︸
=(n−1)!

= n × (n − 1)!



Passons aux règles de calcul usuelles sur les sommes.

Ici on les démontre, ce qui nous fait manipuler les sommes, mais il
faudra connaı̂tre ces formules pour pouvoir les utiliser directement
ensuite.



Règle de la constante multiplicative

La multiplication par une constante a qui ne dépend pas de l’indice de
sommation :

∀a ∈ R,
N∑

i=1

axi = a
N∑

i=1

xi

N∑
i=1

axi = ax1 + ax2 + ax3 + · · ·+ axN−1 + axN

= a (x1 + x2 + x3 + · · ·+ xN−1 + xN)︸ ︷︷ ︸
on utilise l’écriture en somme

= a
N∑

i=1

xi



Règle de la constante additive

L’addition d’une constante b qui ne dépend pas de l’indice de sommation :

∀b ∈ R,
N∑

i=1

(b + xi) = bN +

N∑
i=1

xi

N∑
i=1

(b + xi) = (b + x1) + (b + x2) + (b + x3) + · · ·+ (b + xN−1) + (b + xN)

= b + b + · · ·+ b︸ ︷︷ ︸
N termes

+ x1 + x2 + x3 + · · ·+ xN−1 + xN︸ ︷︷ ︸
on utilise l’écriture en somme

= Nb +

N∑
i=1

xi



Même question mais avec un terme en plus dans la somme (j = 0) : il faut
donc apprendre à compter les termes d’une somme!

∀b ∈ R,
N∑

j=0

(b + xj) = (N + 1)b +

N∑
j=0

xj

N∑
j=0

(b + xj) = (b + x0) + (b + x1) + (b + x2) + · · ·+ (b + xN−1) + (b + xN)

= b + b + · · ·+ b︸ ︷︷ ︸
N + 1 termes !

+ x0 + x1 + x2 + x3 + · · ·+ xN−1 + xN︸ ︷︷ ︸
on utilise l’écriture en somme

= (N + 1)b +

N∑
j=0

xj



Règle de la distribution de la somme

M∑
l=1

(xl + yl) =

M∑
l=1

xl +

M∑
l=1

yl

M∑
l=1

(xl + yl) = (x1 + y1) + (x2 + y2) + · · ·+ (xM + yM)

= (x1 + x2 + · · ·+ xM) + (y1 + y2 + · · ·+ yM)

=

M∑
l=1

xl +

M∑
l=1

yl

Se généralise à plusieurs termes



Même chose avec une soustraction

N∑
i=1

(xi − yi) =

N∑
i=1

xi −

N∑
i=1

yi

N∑
i=1

(xi − yi) = (x1 − y1) + (x2 − y2) + · · ·+ (xN − yN)

= x1 + x2 + · · ·+ xN − y1 − y2 − · · ·− yN

= (x1 + x2 + · · ·+ xN) − (y1 + y2 + · · ·+ yN)

=

N∑
i=1

xi −

N∑
i=1

yi



Manipulation de sommes

n−1∑
k=1

Ck
n xk yn−k

avec
Ck

n =
n!

k !(n − k)!

Cette formule ressemble au binôme de Newton :

n∑
k=0

Ck
n xk yn−k = (x + y)n

avec deux termes en moins (k = 0 et k = n)

Entraı̂nez-vous à manipuler la formule en calculant (x + y)2, (x + y)3, . . .



Partons de là et faisons apparaı̂tre les deux termes manquants :

n∑
k=0

Ck
n xk yn−k

︸ ︷︷ ︸
le binôme

= C0
n x0 yn−0︸ ︷︷ ︸

k=0

+

n−1∑
k=1

Ck
n xk yn−k

︸ ︷︷ ︸
le terme qui nous intéresse

+ Cn
n xn yn−n︸ ︷︷ ︸

k=n

= C0
n︸︷︷︸

=1

x0︸︷︷︸
=1

yn−0 +

n−1∑
k=1

Ck
n xk yn−k + Cn

n︸︷︷︸
=1

xn y0︸︷︷︸
=1

= yn +

n−1∑
k=1

Ck
n xk yn−k + xn

Donc :

(x + y)n = yn +

n−1∑
k=1

Ck
n xk yn−k + xn

⇔
n−1∑
k=1

Ck
n xk yn−k = (x + y)n − yn − xn

⇔
n−1∑
k=1

Ck
n xk yn−k = (x + y)n − (yn + xn)



Un peu de stat des

N∑
i=1

(xi − x̄) = 0

N∑
i=1

(xi − x̄) =
N∑

i=1

xi − Nx̄

= Nx̄ − Nx̄ = 0

On est en train de sommer les termes d’une variable centrée, c’est-à-dire
dont les termes sont calculés en écart à leur moyenne arithmétique. La
somme des termes d’une variable centrée est 0.



Un peu de stat des

N∑
i=1

(yi − ȳ)(xi − x̄) =
N∑

i=1

(yixi − xi ȳ − yi x̄ + x̄ ȳ)

=

N∑
i=1

yixi −

N∑
i=1

xi ȳ −

N∑
i=1

yi x̄ +

N∑
i=1

x̄ ȳ

=

N∑
i=1

yixi − ȳ
N∑

i=1

xi − x̄
N∑

i=1

yi + x̄ ȳ
N∑

i=1

1︸ ︷︷ ︸
=1+···+1=N

=

N∑
i=1

yixi − ȳ
N∑

i=1

xi − x̄
N∑

i=1

yi + x̄ ȳN

=

N∑
i=1

yixi − ȳNx̄ − x̄Nȳ + Nx̄ȳ

=

N∑
i=1

yixi − Nx̄ȳ

C’est N fois la covariance empirique : Cov(x , y) =
1
N

∑N
i=1(yi − ȳ)(xi − x̄).



Un peu de stat des

N∑
i=1

(xi − x̄)2

Soit on recommence tout le calcul, soit on adapte le précédent en posant :
yi = xi . Donc x̄ = ȳ , donc yi − ȳ = xi − x̄ et∑N

i=1(yi − ȳ)(xi − x̄) =
∑N

i=1(xi − x̄)(xi − x̄) =
∑N

i=1(xi − x̄)2. Il vient :

N∑
i=1

(xi − x̄)2 =

N∑
i=1

xixi − Nx̄x̄

=

N∑
i=1

x2
i − Nx̄2

C’est N fois la variance empirique de la variable X .



Normalisation

N∑
i=1

xi∑N
j=1 xj

Pas de difficulté ici si on réalise que le terme
∑N

j=1 xj est une constante.

L’expression est donc de la forme
∑N

i=1 axi avec a =
1∑N

j=1 xj
=

1
Nx̄

.

N∑
i=1

xi

Nx̄
=

∑N
i=1 xi

Nx̄

=
Nx̄
Nx̄

= 1

On a normalisé chaque x par la somme des x pour que la somme
étudiée soit ramenée à 1. A ne pas confondre avec la réduction d’une
variable où il faut diviser par son écart-type pour que la variance de la
variable réduite soit égale à 1.

Attention à la priorité : pas de simplification ! ! ! ! !∑N
i=1(yi − ȳ)(xi − x̄)∑N

i=1(xi − x̄)2
̸=

∑N
i=1(yi − ȳ)∑N
i=1(xi − x̄)



Sommes infinies

Passons à présent aux sommes infinies de termes positifs ou nuls.

Ici, l’intuition est que quand on additionne une infinité de termes positifs, le
résultat devrait tendre vers l’infini.

Sauf si les derniers termes qu’on additionne se mettent à tendre vers 0 à un
moment dans la somme. Additionner des 0 ne change plus la somme.

Pour que le résultat de la somme tende vers une limite finie, il faut donc que
le terme générique converge vers 0 suffisamment rapidement (c’est-à-dire
avant que la somme ait divergé).

Il faut donc d’abord vérifier une condition nécessaire mais non suffisante qui
est que le terme générique tend vers 0 quand l’indice de sommation
tend vers l’infini (en fin de somme donc).

- Si c’est le cas, la somme va peut-être converger vers une limite finie
mais ce n’est pas certain.

- Si ce n’est pas le cas, on est sûr que la série diverge.



Petit conseil : révisez les résultats sur les sommes rencontrées l’année
dernière en cours : somme des termes d’une suite arithmétique, des termes
au carré, d’une suite géométrique, ... Cela sera souvent utile.



∞∑
n=1

1
2n−1

Vérifions la condition de convergence :

lim
n→∞

1
2n−1 = lim

n→∞
(

1
2

)n−1

= 0

puisque 1
2 < 1. La condition est remplie, on va peut-être converger vers une

valeur finie.



On reconnaı̂t ici la somme des termes d’une suite géométrique de raison
1
2 < 1 et dont le premier terme égale 1 (quand n = 1).

∞∑
n=1

1
2n−1 = lim

N→∞
N∑

n=1

(
1
2

)n−1

= lim
N→∞

1 −
(

1
2

)N

1 − 1
2

(on peut utiliser la formule générale)

=
1 − lim

N→∞
(

1
2

)N

1
2

=
1
1
2

= 2



∞∑
n=1

1
n(n + 1)

Vérifions la condition de convergence :

lim
n→∞

1
n(n + 1)

= 0

La condition est remplie, on va peut-être converger vers une valeur finie.



L’astuce consiste ici à utiliser le fait que :

1
n(n + 1)

=
1
n
−

1
n + 1

∞∑
n=1

1
n(n + 1)

= lim
N→∞

N∑
n=1

1
n(n + 1)

= lim
N→∞

N∑
n=1

(
1
n
−

1
n + 1

)
= lim

N→∞[
(

1
1
−

1
2

)
+

(
1
2
−

1
3

)
+

(
1
3
−

1
4

)
+ · · ·+(

1
N − 1

−
1
N

)
+

(
1
N

−
1

N + 1

)
]

= lim
N→∞

(
1 −

1
N + 1

)
= 1 − lim

N→∞
1

N + 1
= 1



Attention au piège dans l’utilisation des règles de calcul

∞∑
n=1

1
5n+2

Vérifions la condition de convergence :

lim
n→∞

1
5n+2 = lim

n→∞
(

1
5

)n+2

= 0

puisque 1
5 < 1. La condition est remplie, on va peut-être converger vers une

valeur finie.



On reconnaı̂t ici la somme des termes d’une suite géométrique de raison 1
5

dont le premier terme est
(

1
5

)3 ̸= 1 (quand n = 1, c’est le piège !).

Pour utiliser la formule habituelle, il faut que le premier terme de la somme
soit 1.

On va donc factoriser par
(

1
5

)3.



∞∑
n=1

1
5n+2 = lim

N→∞
N∑

n=1

1
5n+2

= lim
N→∞

N∑
n=1

(
1
5

)n+2

= lim
N→∞

N∑
n=1

(
1
5

)3 (1
5

)n−1

= lim
N→∞

(
1
5

)3 N∑
n=1

(
1
5

)n−1

= lim
N→∞

(
1
5

)3 1 −
(

1
5

)N

1 − 1
5

(maintenant on peut)

=

(
1
5

)3 1 − lim
N→∞

(
1
5

)N

4
5

=

(
1
5

)3 1
4
5

=
1
53

5
4
=

1
52

1
4
=

1
100



Non suffisance de la condition de convergence

∞∑
n=1

1
n

Vérifions la condition de convergence :

lim
n→∞

1
n
= 0

La condition nécessaire est remplie, cependant on va montrer que la limite
des termes à 0 n’est pas atteinte suffisamment rapidement pour que la
somme converge. Cela illustre bien son caractère non suffisant.



Raisonnons par l’absurde. Posons une hypothèse de départ pour construire
un raisonnement : soit

SN =

N∑
n=1

1
n

et supposons que la somme converge vers une limite ℓ :

lim
N→∞SN = ℓ

C’est donc aussi le cas si on calcule S2N :

lim
N→∞S2N = lim

N→∞
2N∑

n=1

1
n
= ℓ

Dès lors, cela implique :

lim
N→∞(S2N − SN) = lim

N→∞S2N − lim
N→∞SN

= ℓ− ℓ = 0

Donc si on arrive à une conclusion différente, c’est que l’hypothèse de départ
est fausse.



S2N − SN =

2N∑
n=1

1
n
−

N∑
n=1

1
n

=

2N∑
n=N+1

1
n

=
1

N + 1
+

1
N + 2

+ · · ·+ 1
2N

Comme

N + 1 < 2N ⇔ 1
N + 1

>
1

2N

N + 2 < 2N ⇔ 1
N + 2

>
1

2N
. . .

2N ⩽ 2N ⇔ 1
2N
⩾

1
2N

S2N − SN >
1

2N
+

1
2N

+ · · ·+ 1
2N

=
N
2N

=
1
2

Donc lim
N→∞(S2N − SN) ̸= 0 puisque plus grand que 1

2 . Donc l’hypothèse de

départ lim
N→∞SN = ℓ est fausse et donc la série diverge.



∞∑
k=1

1
k2

Vérifions la condition de convergence :

lim
k→∞

1
k2 = 0

La condition nécessaire est remplie, on va peut-être converger.



D’abord, notons que ∀k ∈ N :

k > (k − 1)

⇔k2 > k(k − 1)

⇔ 1
k2 <

1
k(k − 1)

∀k > 1 c’est-à-dire ∀k ⩾ 2

⇔
n∑

k=2

1
k2 <

n∑
k=2

1
k(k − 1)

On évite k = 1 et on commence en k = 2 pour ne pas diviser par 0.
Utilisons l’astuce de la cascade en constatant que :

1
k(k − 1)

=
1

k − 1
−

1
k



n∑
k=2

1
k2 <

n∑
k=2

(
1

k − 1
−

1
k

)
<

(
1
1
−

1
2

)
+

(
1
2
−

1
3

)
+ · · ·+

(
1

n − 1
−

1
n

)
< 1 −

1
n

On y est presque.
A gauche, il manque le premier terme de la somme, quand k = 1. Dans ce
cas, le terme générique vaut 1. Additionner 1 de chaque coté de l’inégalité ne
change rien.

1 +

n∑
k=2

1
k2 < 1 + 1 −

1
n

⇔
n∑

k=1

1
k2 < 2 −

1
n



Il ne reste plus qu’à prendre la limite :

∞∑
k=1

1
k2 = lim

n→∞
n∑

k=1

1
k2 < lim

n→∞
(

2 −
1
n

)
< 2 − lim

n→∞
1
n

< 2

La série a donc bien convergé même si ici on n’a pas donné explicitement sa
limite.



Un petit dernier qui sera utile pour plus tard

(
N∑

i=1

ai

)2

̸=
N∑

i=1

a2
i

Ici la question est juste de vérifier qu’il n’y a pas de confusion entre
∑N

i=1 a2
i

et
(∑N

i=1 ai

)2
. En effet, le dernier contient le précédent du fait des termes

croisés . . . !

(a + b)2
= a2 + ab + ba + b2

= a2 + b2 + 2ab



(
N∑

i=1

ai

)2

=

N∑
i=1

a2
i +

N∑
i=1

N∑
j ̸=i

aiaj

=

N∑
i=1

a2
i + 2

N∑
i=1

N∑
j>i

aiaj (on passe de j ̸= i à j > i)

=

N∑
i=1

a2
i + 2

N∑
i=1,j>i

aiaj (notation compacte)

Appliquez pour N = 3 . . . .



II- Rappels sur les fonctions usuelles



Règles de calcul sur les puissances

Rappelez les règles de calculs des fonctions usuelles

Bien qu’on ait déjà bien étudié ces questions en première année, il y a
encore beaucoup d’approximations dans l’utilisation des fonctions
avec des puissances, causant des erreurs ou des simplifications de
résultats non abouties. Il est très important de bien maı̂triser ces règles.



xa xb

On se souvient que xa = x × · · · × x︸ ︷︷ ︸
a fois

.

Donc en revenant à cette définition si on a un doute :

xa xb = x × · · · × x︸ ︷︷ ︸
a fois

× x × · · · × x︸ ︷︷ ︸
b fois︸ ︷︷ ︸

a+b fois

= xa+b



(xa)b

(xa)b = xa × . . . × xa︸ ︷︷ ︸
b fois

= xab

donc (x
1
a )b = x

b
a .



xa ya

xa ya = x × · · · × x︸ ︷︷ ︸
a fois

× y × · · · × y︸ ︷︷ ︸
a fois

= xy × · · · × xy︸ ︷︷ ︸
a fois

= (xy)a



x
1
a

c’est la racine a-ième de x . Préférez cette écriture plutôt que celle avec la
racine.



1
xa

Ici il est important de comprendre que 1
xa = x−a.

Pour s’en convaincre, calculons :

xa × x−a = xa−a

= x0

= 1

grâce au point 1. De l’égalité, il vient :

xa × x−a = 1 ⇔ x−a =
1
xa



1
x−a

Grâce au point précédent et aux règles de calcul des fractions :

1
x−a =

1
1

xa

= 1 × xa

1
= xa



Règles de calcul sur les fonctions usuelles

lim
x→0+

ln(x) = −∞
ln(1) = 0.

lim
x→+∞ ln(x) = +∞.

ln(a × b) = ln(a) + ln(b).

ln(an) = n × ln(a).

ln( a
b ) = ln(a) − ln(b).

ln( 1
x ) = − ln(x).

lim
x→−∞ex = 0.

e0 = 1.

e1 = e, la constante d’Euler.

lim
x→+∞ex = +∞.

ea+b = ea × eb (propriété 3).

e−a = 1
ea (propriété 6).

ea−b = ea

eb (propriétés 1 et 6).

eq×a = (eq)a = (ea)q (propriété 2).

eln(u(x)) = u(x).

ln(eu(x)) = u(x).



III- Rappels sur les dérivées



Règle de calculs sur les dérivées

Rappelez les définitions :

- de la dérivée d’une fonction en un point. Comment peut-on l’interpréter?

- de la fonction dérivée. A quoi sert-elle?

- de la fonction dérivée seconde. A quoi sert-elle?

- de la fonction dérivée partielle. A quoi sert-elle?



Soient a, b et α des réels. Rappelez les définitions de la dérivée f ′(x) de la
fonction f (x) selon qu’elle est définie comme :

- f (x) = a ⇒ f ′(x) = 0

- f (x) = ax + b ⇒ f ′(x) = a

- f (x) = xα ⇒ f ′(x) = αxα−1

- f (x) =
∑N

i=0 ai x i ⇒ f ′(x) =
∑N

i=1 i × ai x i−1

- f (x) = u(x) + v(x) ⇒ f ′(x) = u ′(x) + v ′(x)

- f (x) =
∑N

i=1 ui(x) ⇒ f ′(x) =
∑N

i=1 u ′
i (x)

- f (x) = u(x)× v(x) ⇒ f ′(x) = u ′(x)× v(x) + u(x)× v ′(x)

- f (x) = u(x)
v(x) ⇒ f ′(x) = u ′(x)v(x)−u(x)v ′(x)

v2(x)



- f (x) = h(g(x)) ⇒ f ′(x) =

- f (x) = [u(x)]α ⇒ f ′(x) = αu ′(x)[u(x)]α−1

- f (x) = 1
v(x) ⇒ f ′(x) = − v ′(x)

v2(x)

- f (x) =
√

x ⇒ f ′(x) = 1
2
√

x

- f (x) = ln(x) ⇒ f ′(x) = 1
x

- f (x) = ln[u(x)] ⇒ f ′(x) = u ′(x)
u(x)

- f (x) = ex ⇒ f ′(x) = ex

- f (x) = eu(x) ⇒ f ′(x) = u ′(x)× eu(x)



IV- Rappels sur les intégrales



Définition

Qu’est-ce qu’une intégrale?∫b

a
f (x) dx = lim

n→+∞
n−1∑
i=0

(
b − a

n

)
× f

(
a + i × b − a

n

)

Comment peut-on l’interpréter?

Qu’est-ce qu’une primitive?

F (.) est une primitive de f (.) (à une constante près) ssi : F ′(x) = f (x).

Il vient :
∫b

a f (x) dx = [F (x)]ba = F (b) − F (a).

Donc la constante d’intégration ne compte pas dans le calcul d’une intégrale.



Primitives usuelles

Soient a, k0 et α des réels. Les primitives F (x) (à k0 la constante d’intégration
près) de la fonction F ′(x) = f (x) selon qu’elle est définie comme :

- f (x) = 0 ⇒ F (x) = k0

- f (x) = a ⇒ F (x) = ax + k0

- f (x) = xα ⇒ F (x) = 1
α+1 xα+1 + k0

- f (x) = u ′(x)[u(x)]α ⇒ F (x) = 1
α+1 [u(x)]

α+1 + k0

- f (x) = v ′(x)
v2(x) ⇒ F (x) = − 1

v(x) + k0

- f (x) = 1
x ⇒ F (x) = ln(x) + k0

- f (x) = u ′(x)
u(x) ⇒ F (x) = ln[u(x)] + k0

- f (x) = ex ⇒ F (x) = ex + k0

- f (x) = u ′(x)× eu(x) ⇒ F (x) = eu(x) + k0

- f (x) = u ′(x) + v ′(x) ⇒ F (x) = u(x) + v(x) + k0



Règles de calcul sur les intégrales

-
∫b

a f (x) dx = lim
n→+∞

∑n−1
i=0

(
b−a

n

)
× f

(
a + i × b−a

n

)
-
∫b

a {f (x) + g(x)}dx =
∫b

a f (x) dx +
∫b

a g(x) dx

-
∫b

a c × f (x)dx = c
∫b

a f (x)dx

-
∫a

b f (x)dx = −
∫b

a f (x)dx

-
∫b

a f (x)dx +
∫a

b f (x)dx = 0

-
∫b

a f (x)dx +
∫c

b f (x)dx =
∫c

a f (x)dx

-
∫a

a f (x)dx = 0
- g(x) = f (x) ⇒

∫
x∈I g(x)dx =

∫
x∈I f (x)dx

-
∫u
−u f (x)dx =

{
0 si f impair
2
∫u

0 f (x)dx si f pair

-
∫b

a f (x)dx = [F (x)]ba = F (b) − F (a)

-
∫b
−∞ f (x)dx = [F (x)]b−∞ = F (b) − lim

a→−∞F (a)

-
∫+∞

a f (x)dx = [F (x)]+∞
a = lim

b→+∞F (b) − F (a)

-
∫+∞
−∞ f (x)dx = [F (x)]+∞

−∞ = lim
b→+∞F (b) − lim

a→−∞F (a)

-
∫b

x=a

∫d
y=c f (x , y)dxdy =

∫d
y=c

∫b
x=a f (x , y)dxdy



V- Rappels sur les probabilités



Notations

Soit E l’ensemble des réalisables :

P(E) = 1

P(∅) = 0

∪ : union d’ensembles ou d’événements : signifie ”ou”

∩ : intersection d’ensembles ou d’événements : signifie ”et”

Très liés aux notions d’événements incompatibles et indépendants



Probabilités d’une union d’événements incompatibles

Soient A et B deux événements incompatibles (A ∩ B = ∅) :

P(A ∩ B) = 0

P(A ∪ B) = P(A) + P(B)

Soient
{

Ai

}n

i=1
un ensemble de n événements incompatibles :

P
( n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)



Application directe : probabilité de l’événement contraire

Soient A et son événement contraire A dans E .

Par définition, ils sont incompatibles (A ∩ A = ∅) et forment un système
complet d’événements (A ∪ A = E) :

P(A ∪ A) = P(E)

⇔ P(A) + P(A) = 1

⇔ P(A) = 1 − P(A)



Généralisation si pas incompatibles

P(A ∪ B) = P(A) + P(B)

− P(A ∩ B)

P(A ∪ B ∪ C) = P(A) + P(B) + P(C)

− P(A ∩ B) − P(A ∩ C) − P(B ∩ C)

+ P(A ∩ B ∩ C)

P
( n⋃

i=1

Ai

)
=

n∑
i=1

P(Ai)

−

n∑
i=1,i<j

P(Ai ∩ Aj)

+

n∑
i=1,i<j<k

P(Ai ∩ Aj ∩ Ak )

+ . . .

+ (−1)n+1P
( n⋂

i=1

Ai

)



Probabilités conditionnelles ou formule de Bayes

P(A|B) =
P(A ∩ B)

P(B)

On a aussi

P(B|A) =
P(A ∩ B)

P(A)

On en déduit la formule des probabilités composées :

P(A ∩ B) = P(A|B)P(B) = P(B|A)P(A)

et on peut réécrire :

P(A|B) =
P(B|A)P(A)

P(B)

P(B|A) =
P(A|B)P(B)

P(A)



Formule des probabilités totales

Supposons A1 et A2 un système complet d’événements (2 événements
incompatibles tq A1 ∪ A2 = E). Soit B un événement.

B = B ∩ E

= B ∩ (A1 ∪ A2)

= (B ∩ A1) ∪ (B ∩ A2)

Comme incompatibles :

P(B) = P
[(

B ∩ A1
)
∪
(
B ∩ A2

)]
= P

(
B ∩ A1

)
+ P

(
B ∩ A2

)
= P

(
B|A1

)
P
(
A1
)
+ P

(
B|A2

)
P
(
A2
)

en utilisant la formule des probabilités composées.



Généralisation

Supposons
{

Ai

}n

i=1
un système complet d’événements (n événements

incompatibles tq
⋃n

i=1 Ai = E). Soit B un événement.

B = B ∩ E

= B ∩
( n⋃

i=1

Ai

)
=

n⋃
i=1

(
B ∩ Ai

)
=
(
B ∩ A1

)
∪
(
B ∩ A2

)
∪ · · · ∪

(
B ∩ An

)
Comme incompatibles :

P(B) = P
[(

B ∩ A1
)
∪
(
B ∩ A2

)
∪ · · · ∪

(
B ∩ An

)]
= P

(
B ∩ A1

)
+ P

(
B ∩ A2

)
+ · · ·+ P

(
B ∩ An

)
=

n∑
i=1

P
(
B ∩ Ai

)
=

n∑
i=1

P
(
B|Ai

)
P
(
Ai
)



Formule de probabilités des causes

Imaginons qu’on recherche à présent P
(
Aj |B

)
.

Avec Bayes on a :

P(Aj |B) =
P(B|Aj)P(Aj)

P(B)

=
P(B|Aj)P(Aj)∑n
i=1 P(B|Ai)P(Ai)

avec la formule des probabilités totales.



Intersection d’événements indépendants

P(A ∩ B) = P(A)P(B)

P(
n⋂

i=1

Ai) =

n∏
i=1

P(Ai)

Il vient :

P(A|B) =
P(A ∩ B)

P(B)
= P(A)

P(B|A) =
P(A ∩ B)

P(A)
= P(B)



VI- Rappels sur les variables aléatoires



Variables Aléatoires Discrètes : VAD

Soit X suit une variable aléatoire discrète de loi de probabilités P(X = x)
pour x ∈ X.

Comment sait-on qu’on est en présence d’une loi de probabilités?

Une loi de probabilités est une formule qui prédit P(X = x), la probabilité des
résultats numériques discrets x ∈ X ⊂ Z d’une expérience aléatoire codifiée.

Elle vérifie les conditions suivantes :

- ∀x ∈ X, P(X = x) ∈ [0,1] car ce sont des probabilités.

-
∑

x∈X P(X = x) = 1 car X est l’ensemble des réalisables.

Dans la pratique, on vérifiera simplement la positivité des probabilités et leur
somme à 1.



La loi uniforme discrète

∀k ∈ X = [1, . . . ,n], P(X = k) = 1
n

C’est ici la loi uniforme discrète rencontrée à l’exercice 2. Les n résultats
possibles de l’expérience sont tous équiprobables (comme le résultat d’un
lancer de dé pour n = 6).

On constate que ∀k ∈ X, P(X = k) = 1
n ∈ [0,1].

Ensuite, il faut montrer que
∑

k∈X P(X = k) = 1 :

∑
k∈X

P(X = k) =
n∑

k=1

1
n

= n × 1
n

= 1

On est donc bien en présence d’une loi de probabilités.



La loi de Bernoulli

P(X = x) = px (1 − p)(1−x) avec x = 0,1.

C’est la loi de Bernoulli, une expérience aléatoire à 2 issues : succès/échec
(comme gagner/perdre, pile/face, ...) avec p la probabilité associée au
”succès” et 1 − p celle de l’”échec”.

Attention, ici la notion de succès n’est pas toujours positive (comme la
probabilité de faire faillite, être malade, mourir, ...).

Comme P(X = 1) = p ∈ [0,1] ou P(X = 0) = 1 − p ∈ [0,1], la première
condition est bien vérifiée.

Ensuite, il faut montrer que
∑

x∈X P(X = x) = 1 :

∑
x∈X

P(X = x) =
1∑

x=0

px (1 − p)(1−x)

= p0(1 − p)1︸ ︷︷ ︸
si x=0

+ p1(1 − p)0︸ ︷︷ ︸
si x=1

= (1 − p) + p

= 1
On est donc bien en présence d’une loi de probabilités.



La loi binomiale

∀k ∈ [0, . . . ,n], P(X = k) = Ck
n pk (1 − p)(n−k), avec Ck

n = n!
k!(n−k)! .

C’est la loi Binomiale. C’est une expérience qui consiste à déterminer la
probabilité de k succès dans la répétition de n expériences de Bernoulli
indépendantes. Ainsi, l’ensemble des possibles pour k est de 0 succès sur n
ou de n succès sur n.

Il est évident que P(X = k) est positif comme produit des termes positifs.

Ensuite, il faut montrer que
∑

k∈X P(X = k) = 1. En utilisant le binôme de
Newton : ∑

k∈X

P(X = k) =
n∑

k=0

Ck
n pk (1 − p)(n−k)

= [p + (1 − p)]n

= 1n

= 1

On est donc bien en présence d’une loi de probabilités.



La loi géométrique

∀k ∈ [1,+∞[, P(X = k) = (1 − p)k−1 p.
C’est la loi géométrique. Elle sert à compter le temps d’attente du premier
succès dans la répétition d’une loi de Bernoulli de façon indépendante. On
peut avoir un succès dès le premier tirage ou jamais (événement quasi
impossible).

De façon évidente, ∀k , P(X = k) ∈ [0,1] comme produit de termes positifs et
plus petits que 1.

Ensuite, il faut montrer que
∑

k∈X P(X = k) = 1. En utilisant la somme des
termes d’une suite géométrique de raison (1 − p) :

∑
k∈X

P(X = k) =
+∞∑
k=1

(1 − p)k−1 p

= p
+∞∑
k=1

(1 − p)k−1

= p
1 − (1 − p)+∞

1 − (1 − p)
= p

1
1 − (1 − p)

=
p
p
= 1

On est donc bien en présence d’une loi de probabilités.



La loi de Poisson

∀k ∈ [0,+∞[ et λ > 0,P(X = k) = λk e−λ

k! (indication : ex =
∑+∞

k=0
xk

k! ).

C’est la loi de Poisson, ou loi des événements rares. Elle sert à dénombrer le
nombre d’accidents sur une période de temps. On peut donc en avoir de 0 à
une infinité (vraiment pas de chance).

Il est évident que P(X = k) est positif comme produit des termes positifs.

Ensuite, il faut montrer que
∑

k∈X P(X = k) = 1. En utilisant le
développement limité de l’exponentielle :

∑
k∈X

P(X = k) =
+∞∑
k=0

λk e−λ

k !

= e−λ

+∞∑
k=0

λk

k !

= e−λ × eλ

= e−λ+λ = e0 = 1

On est donc bien en présence d’une loi de probabilités.



Fonctions de densité/de répartition

Posons : F (x) = P(X < x) et F ′(x) = f (x)

P(a < X < b) = P(X < b) − P(X < a)

= F (b) − F (a)

= [F (x)]ba

=

∫b

a
f (x) dx

F (.) est la fonction de répartition (ou cumulative density function)

f (.) est la fonction de densité telle que f (x) = F ′(x).



Fonction de répartition et probabilités

Définir la fonction de répartition F (.) en termes de probabilités.

F (x) = P(X < x)



Fonction de densité et probabilités

La fonction de densité f (.) est la dérivée de la fonction de répartition.

f (x) = F ′(x)

C’est la probabilité moyenne d’un intervalle infiniment petit autour de x :

f (x) = F ′(x)

= lim
h→0

F (x + h) − F (x)
h

= lim
h→0

P(X < x + h) − P(X < x)
h

= lim
h→0

P(x < X < x + h)
h

Pour les VAC, son rôle est équivalent à celui de la loi de probabilités pour les
VAD MAIS ce n’est pas une probabilité !



Densité de probabilités

Soit X suit une variable aléatoire continue de densité de probabilités f (x)
pour x ∈ X, l’ensemble des réalisables ou support.

Comment sait-on que f (.) est une densité de probabilités?

Une densité de probabilités vérifie les conditions suivantes :

- ∀x ∈ X, f (x) ⩾ 0. Donc la fonction de répartition est non-décroissante.

- C’est une fonction continue (sauf éventuellement en un nombre fini de
points).

-
∫

x∈X
f (x) dx = 1.



La loi uniforme continue

f (x) =

{
1

b−a ∀x ∈ [a,b]
0 sinon

Positive (car b > a)
Continue sauf en a et b.



La loi uniforme continue

∫
x∈X

f (x) dx =

∫b

a

1
b − a

dx

=

[
x

b − a

]b

a

=
b

b − a
−

a
b − a

=
b − a
b − a

= 1

On est donc bien en présence d’une densité de probabilités. MAIS ce n’est
pas une probabilité (posez a = 0 et b = 0.5 : f (x) = 2.)



La loi exponentielle

Une loi exponentielle modélise la durée de vie d’un phénomène sans
mémoire, ou sans vieillissement, ou sans usure.

La probabilité que le phénomène dure au moins t + s heures (ou n’importe
quelle autre unité de temps) sachant qu’il a déjà duré t heures sera la même
que la probabilité de durer s heures à partir de sa mise en fonction initiale.

En d’autres termes, le fait que le phénomène ait duré pendant t heures ne
change rien à son espérance de vie à partir du temps t .



La loi exponentielle

f (x) =

{
λe−λx ∀x > 0, λ > 0
0 sinon

Positive (car l’exponentielle est toujours positive et λ aussi)
Continue sauf en 0.



La loi exponentielle

∫
x∈X

f (x) dx =

∫+∞
0

λe−λx dx

=
[
−e−λx]+∞

0

= lim
x→+∞

(
−e−λ×x) −

(
−e−λ×0)

= 0 − (−1)

= 1

On est donc bien en présence d’une densité de probabilités.



La loi normale

X suit une loi normale (m,σ2) de densité :

ϕ(x) =
1√

2πσ2
e−

(x−m)2

2σ2 ,∀x ∈ R



Fonctions de répartition discrètes et continues

Caractérisez les fonctions de répartition F1(x) = P(X < x) et
F2(x) = P(X ⩽ x).

Ici pour une loi de probabilité donnée, ∀x ∈ X, P(X = x), deux définitions de
la fonction de répartition sont possibles :

- F1(x) = P(X < x) : cumul des probabilités pour les événements
inférieurs strictement à x . Ainsi, la probabilité de l’événement X < x
représente la probabilité de l’union des événements (incompatibles)
pour lesquels X prend les valeurs strictement inférieures à x (donc x est
exclu) dans l’ensemble des possibles de la loi :

F1(x) = P(X < x) =
∑
k<x

P(X = k)

- F2(x) = P(X ⩽ x) : cumul des probabilités pour les événements
inférieurs ou égaux à x . Ainsi, la probabilité de l’événement X ⩽ x
représente la probabilité de l’union des événements (incompatibles)
pour lesquels X prend les valeurs inférieures ou égales à x (donc x est
inclus) dans l’ensemble des possibles de la loi :

F2(x) = P(X ⩽ x) =
∑
k⩽x

P(X = k)



Comme l’événement (X ⩽ x) = (X < x) ∪ (X = x), l’union de deux
événements incompatibles, il vient que :

P(X ⩽ x) = P [(X < x) ∪ (X = x)]

= P(X < x) + P(X = x)

soit la relation entre les deux fonctions :

F2(x) = F1(x) + P(X = x)

Il faut également faire attention au choix de l’indice de sommation : ici on ne
peut plus utiliser x .



Les représenter graphiquement si X suit une loi de Bernoulli ou pour un
tirage de dé standard.



Fonction de répartition discrète :
P(X ⩽ x) =

∑
k⩽x P(X = k)

avec P(X = k) = 1
6 et k ∈ [1;6]



La fonction de densité f (.) est la dérivée de la fonction de répartition F (.).

F ′(x) = f (x)

F ′(u) = f (u)

⇔
∫ x

−∞ F ′(u)du =

∫ x

−∞ f (u)du

⇔[F (u)]x−∞ =

∫ x

−∞ f (u)du

⇔F (x) − lim
x→−∞F (x) =

∫ x

−∞ f (u)du

⇔F (x) − lim
x→−∞P(X < x) =

∫ x

−∞ f (u)du

⇔F (x) =
∫ x

−∞ f (u)du

C’est une fonction croissante (puisque sa dérivée est positive).

Elle prend des valeurs comprises entre 0(= lim
x→−∞F (x)) et 1(= lim

x→+∞F (x))

puisque c’est une probabilité.



Soit X une variable aléatoire continue définie sur x ∈ X.

Caractérisez les fonctions de répartition F1(x) = P(X < x) et
F2(x) = P(X ⩽ x).

Ici F1(x) = F2(x) puisque P(X < x) = P(X ⩽ x) =
∫x
−∞ f (u) du dans le cas

continu.

Donc, contrairement au cas discret, il est inutile de faire la distinction.



Fonctions de répartition de la loi uniforme : VAD/VAC

Lois uniformes discrète P(X = k) =
1
5

et continue F(x) =


0 x < 0
x x ∈ [0,1]
1 x > 1



Fonction de répartition de la loi uniforme continue

f (x) =

{
1

b−a ∀x ∈ [a,b]
0 sinon

F (x) =
∫ x

−∞ f (u) du

=

∫ x

a

1
b − a

du si x ∈ [a,b]

=

[
u

b − a

]x

a

=
x

b − a
−

a
b − a

=
x − a
b − a

Attention : la solution doit être déterminée sur R pour être complète.

F (x) = P(X ⩽ x) =


0 x < a
x − a
b − a

x ∈ [a,b]

1 x > b



Fonction de répartition de la loi uniforme continue



Fonction de répartition de la loi exponentielle

f (x) =

{
λe−λx ∀x > 0, λ > 0
0 sinon

F (x) =
∫ x

−∞ f (u) du

=

∫ x

0
λe−λu du si x > 0

=
[
−e−λu]x

0

= −e−λx −
(
−e−λ0)

= −e−λx + 1

Attention : la solution doit être déterminée sur R pour être complète.

F (x) = P(X ⩽ x) =

{
1 − e−λx x > 0
0 sinon



Fonction de répartition de la loi exponentielle



Fonction de répartition de la loi Normale

ϕ(x) =
1√

2πσ2
e−

(x−m)2

2σ2 ,∀x ∈ R

F (x) =
∫ x

−∞ ϕ(u) du

=

∫ x

−∞
1√

2πσ2
e−

(u−m)2

2σ2 du

Pas de solution explicite.



Fonction de répartition de la loi Normale



Calculer une probabilité avec la loi Normale

Il faut utiliser la table de la loi normale centrée réduite N(0,1).

On utilise la relation : si Y ⇝ N(m,σ2), si X ⇝ N(0,1), alors :

Y = m + σX ⇔ X =
Y − m

σ

Cette table est particulière car uniquement pour des valeurs de x ⩾ 0 car la
loi est symétrique.

Les probabilités pour les valeurs x < 0 se déduisent par le raisonnement
graphique utilisant la symétrie.



Calculer une probabilité avec la loi Normale



Applications

f (x) =

{
1

b−a ∀x ∈ [a,b]
0 sinon

F (x) = P(X ⩽ x) =


0 x < a
x−a
b−a x ∈ [a,b]
1 x > b

P(X < a) = F (a) = 0

P(X > b) = 1 − P(X < b) = 1 − F (b) = 1 − 1 = 0

P(a < X < b) = P(X < b) − P(X < a) = F (b) − F (a) =
b − a
b − a

−
a − a
b − a

= 1



f (x) =

{
λe−λx ∀x > 0, λ > 0
0 sinon

F (x) = P(X ⩽ x) =

{
1 − e−λx x > 0
0 sinon

P(X < a) =

{
1 − e−λa si a > 0
0 sinon

P(X > b) = 1 − P(X < b) = 1 − F (b) =

{
1 − (1 − e−λb) = e−λb si b > 0
1 − 0 = 1 sinon



Tout dépend de la position de a et de b par rapport à 0.

P(a < X < b) = P(X < b) − P(X < a)

= F (b) − F (a)

=


0 − 0 si a < 0,b < 0
(1 − e−λb) − 0 si a < 0,b > 0
(1 − e−λb) − (1 − e−λa) si a > 0,b > 0

=


0 si a < 0,b < 0
1 − e−λb si a < 0,b > 0
e−λa − e−λb si a > 0,b > 0



VII- Rappels sur les principaux moments des variables
aléatoires



Principaux moments théoriques d’une VAD

E(X ) =
∑
x∈X

x P(X = x)

V(X ) =
∑
x∈X

[x − E(X )]2 P(X = x)

Ce sont des constantes non aléatoires.



De manière générale, pour toute fonction φ(.) :

E[φ(X )] =
∑
x∈X

φ(x) P(X = x)

Ainsi par exemple :

E[X 2] =
∑
x∈X

x2 P(X = x)

E[X 3] =
∑
x∈X

x3 P(X = x)

E[X 4] =
∑
x∈X

x4 P(X = x)

E[(X − E(X ))2] =
∑
x∈X

[x − E(X )]2 P(X = x) = V(X )



Application :

x 1 2 3 4 5
P(X = x) 0.2 0.2 0.2 0.2 0.2



Ici on a : x ∈ X = {1, . . . ,5} et P(X = x) = 1
5 ∈ [0,1]. De plus :

∑
x∈X

P(X = x) =
5∑

x=1

1
5

=
1
5
× 5 = 1



E(X ) =
∑
x∈X

x P(X = x)

=

5∑
x=1

x × 1
5

=
1
5

5∑
x=1

x︸ ︷︷ ︸
=

1
5

5 × 6
2

= 3

si vous vous souvenez que
∑N

x=1 x =
N(N + 1)

2
(la somme des termes d’une

suite arithmétique de raison 1).



V(X ) =
∑
x∈X

[x − E(X )]2 P(X = x)

=

5∑
x=1

[x − 3]2 × 1
5

=
1
5

5∑
x=1

[x − 3]2

=
1
5

[
(1 − 3)2

+ (2 − 3)2
+ (3 − 3)2

+ (4 − 3)2
+ (5 − 3)2

]
=

1
5
[4 + 1 + 0 + 1 + 4] = 2



Ici on reconnaı̂t la loi uniforme discrète : x ∈ X = {1, . . . ,n} et P(X = x) = 1
n .

Tous les résultats possibles de l’expérience ont la même probabilité.



Principales propriétés des moments théoriques des VAD

Soit X une variable aléatoire discrète de loi de probabilités P(X = x) définie
pour x ∈ X. Soient a et b deux constantes réelles.

Montrez que l’espérance est un opérateur linéaire : E(aX + b) = a E(X ) + b.



Principales propriétés des moments théoriques des VAD

Utilisons :
E[φ(X )] =

∑
x∈X

φ(x) P(X = x)

en posant φ(X ) = aX + b (du coup φ(x) = ax + b).

E(aX + b) =
∑
x∈X

(ax + b) P(X = x)

=
∑
x∈X

[ax × P(X = x) + bP(X = x)]

=
∑
x∈X

ax × P(X = x) +
∑
x∈X

bP(X = x)

= a
∑
x∈X

x × P(X = x)︸ ︷︷ ︸
=E(X)

+ b
∑
x∈X

P(X = x)︸ ︷︷ ︸
=1

= a E(X ) + b



Principales propriétés des moments théoriques des VAD

Calculez l’espérance de X − E(X ).

Utilisons E(aX + b) = aE(X ) + b en posant a = 1 et b = −E(X ).

E [X − E(X )] = E(X ) − E(X )

= 0

X −E(X ) est la variable aléatoire X qu’on a centrée. Son espérance est donc
0.



Principales propriétés des moments théoriques des VAD

Montrez que la variance est un opérateur quadratique : V(aX + b) = a2V(X ).

La variance de X s’écrit :

V(X ) =
∑
x∈X

[x − E(X )]2 P(X = x)

On a donc :

V(aX + b) =
∑
x∈X

[ax + b − E(aX + b)]2 P(X = x)

ou alors :

V(aX + b) = E[aX + b − E(aX + b)]2

=
∑
x∈X

[ax + b − E(aX + b)]2 P(X = x)

en posant φ(X ) = [aX + b − E(aX + b)]2 (du coup
φ(x) = [ax + b − E(aX + b)]2).



Principales propriétés des moments théoriques des VAD

Concentrons-nous sur le carré. Comme E(aX + b) = aE(X ) + b :

[ax + b − E(aX + b)]2 = [ax + b − aE(X ) − b]2

= [ax − aE(X )]
2

= [a(x − E(X ))]
2

= a2 [x − E(X )]
2

On remplace :

V(aX + b) =
∑
x∈X

[ax + b − E(aX + b)]2 P(X = x)

=
∑
x∈X

a2 [x − E(X )]
2 P(X = x)

= a2
∑
x∈X

[x − E(X )]
2 P(X = x)︸ ︷︷ ︸

= a2 V(X )



Principales propriétés des moments théoriques des VAD

Calculez la variance de
X√
V(X )

.

Utilisons V(aX + b) = a2V(X ) en posant a = 1√
V(X)

et b = 0.

V

(
X√
V(X )

)
=

(
1√
V(X )

)2

V(X )

=
1

V(X )
V(X )

= 1

X√
V(X )

est la variable X réduite, c’est-à-dire divisée par son écart-type. La

variance d’une variable réduite est donc égale à 1.



Principales propriétés des moments théoriques des VAD

Montrez qu’on peut écrire : V(X ) = E(X 2) − E2(X ).

La variance s’écrit :

V(X ) =
∑
x∈X

[x − E(X )]2 P(X = x)

Développons le carré et distribuons :

V(X ) =
∑
x∈X

[x − E(X )]2 P(X = x)

=
∑
x∈X

[x2 − 2xE(X ) + E2(X )] P(X = x)

=
∑
x∈X

[x2P(X = x) − 2xE(X )P(X = x) + E2(X )P(X = x)]

=
∑
x∈X

x2 P(X = x) +
∑
x∈X

−2xE(X ) P(X = x) +
∑
x∈X

E2(X ) P(X = x)

=
∑
x∈X

x2 P(X = x)︸ ︷︷ ︸
=E(X2)

− 2E(X )
∑
x∈X

x P(X = x)︸ ︷︷ ︸
=E(X)

+ E2(X )
∑
x∈X

P(X = x)︸ ︷︷ ︸
=1

= E(X 2) − 2E2(X ) + E2(X ) = E(X 2) − E2(X )



Principales propriétés des moments théoriques des VAD

Montrez qu’on peut également écrire : V(X ) = E{[X (X − 1)]}+ E(X ) − E2(X ).
Repartons du dernier résultat :

V(X ) = E(X 2) − E2(X )

= E(X 2 −X + X︸ ︷︷ ︸
=0

) − E2(X )

= E(X 2 − X︸ ︷︷ ︸+X ) − E2(X )

= E [X (X − 1) + X ] − E2(X )

= E [X (X − 1)] + E(X ) − E2(X )



Principales propriétés des moments théoriques des VAD

Le passage de E [X (X − 1) + X ] = E [X (X − 1)] + E(X ) n’est pas trivial mais
n’est pas difficile non plus en repassant par les sommes :

E

X (X − 1) + X︸ ︷︷ ︸
φ(X)

 =
∑
x∈X

[x(x − 1) + x︸ ︷︷ ︸
=φ(x)

] P(X = x)

=
∑
x∈X

[x(x − 1)P(X = x) + xP(X = x)]

=
∑
x∈X

x(x − 1)P(X = x) +
∑
x∈X

xP(X = x)

= E [X (X − 1)] + E(X )



Principaux moments des VAC

L’espérance :

VAD : E(X ) =
∑
x∈X

xP(X = x)

VAC : E(X ) =

∫
x∈X

xf (x) dx

La variance :
VAD : V(X ) =

∑
x∈X

[x − E(X )]2 P(X = x)

VAC : V(X ) =

∫
x∈X

[x − E(X )]2 f (x) dx

Ce sont des constantes non aléatoires.



De manière générale, pour toute fonction φ(.) :

E[φ(X )] =

∫
x∈X

φ(x) f (x) dx

Ainsi par exemple :

E[X 2] =

∫
x∈X

x2 f (x) dx

E[X 3] =

∫
x∈X

x3 f (x) dx

E[X 4] =

∫
x∈X

x4 f (x) dx

V(X ) = E[(X − E(X ))2] =

∫
x∈X

[x − E(X )]2 f (x) dx



Principales propriétés des moments théoriques des VAC

Soit X une variable aléatoire continue de densité de probabilités f (x) définie
pour x ∈ X. Soient a et b deux constantes réelles.

La bonne nouvelle : ce sont les mêmes que pour les VAD (car une intégrale
c’est une somme).



Principales propriétés des moments théoriques des VAC

Montrez que l’espérance est un opérateur linéaire : E(aX + b) = a E(X ) + b.

Utilisons :
E[φ(X )] =

∫
x∈X

φ(x) f (x) dx

en posant φ(X ) = aX + b (du coup φ(x) = ax + b).



Principales propriétés des moments théoriques des VAC

E(aX + b) =
∫

x∈X

(ax + b) f (x) dx

=

∫
x∈X

[ax f (x) dx + bf (x) dx ]

=

∫
x∈X

ax f (x) dx +

∫
x∈X

bf (x) dx

= a
∫

x∈X

x f (x) dx︸ ︷︷ ︸
=E(X)

+ b
∫

x∈X

f (x) dx︸ ︷︷ ︸
=1

= a E(X ) + b



Principales propriétés des moments théoriques des VAC

Calculez l’espérance de X − E(X ).

Utilisons E(aX + b) = aE(X ) + b en posant a = 1 et b = −E(X ).

E [X − E(X )] = E(X ) − E(X )

= 0

X −E(X ) est la variable aléatoire X qu’on a centrée. Son espérance est donc
0.



Principales propriétés des moments théoriques des VAC

Montrez que la variance est un opérateur quadratique : V(aX + b) = a2V(X ).

La variance de X s’écrit :

V(X ) =

∫
x∈X

[x − E(X )]2 f (x) dx

On a donc :

V(aX + b) =
∫

x∈X

[ax + b − E(aX + b)]2 f (x) dx



Principales propriétés des moments théoriques des VAC

Comme E(aX + b) = a E(X ) + b :

[ax + b − E(aX + b)]2 = [ax + b − aE(X ) − b]2

= [ax − aE(X )]
2

= [a(x − E(X ))]
2

= a2 [x − E(X )]
2

On remplace :

V(aX + b) =
∫

x∈X

[ax + b − E(aX + b)]2 f (x) dx

=

∫
x∈X

a2 [x − E(X )]
2 f (x) dx

= a2
∫

x∈X

[x − E(X )]
2 f (x) dx︸ ︷︷ ︸

= a2 V(X )



Principales propriétés des moments théoriques des VAC

Calculez la variance de
X√
V(X )

.

Utilisons V(aX + b) = a2V(X ) en posant a = 1√
V(X)

et b = 0.

V

(
X√
V(X )

)
=

(
1√
V(X )

)2

V(X )

=
1

V(X )
V(X )

= 1

X√
V(X )

est la variable X réduite, c’est-à-dire divisée par son écart-type. La

variance d’une variable réduite est donc égale à 1.



Principales propriétés des moments théoriques des VAC

Montrez qu’on peut écrire : V(X ) = E(X 2) − E2(X ).

La variance s’écrit :

V(X ) =

∫
x∈X

[x − E(X )]2 f (x) dx

Développons le carré et distribuons :

V(X ) =

∫
x∈X

[x − E(X )]2 f (x) dx

=

∫
x∈X

[x2 − 2xE(X ) + E2(X )] f (x) dx

=

∫
x∈X

[x2f (x) dx − 2xE(X )f (x) dx + E2(X )f (x) dx ]

=

∫
x∈X

x2 f (x) dx +

∫
x∈X

−2xE(X ) f (x) dx +

∫
x∈X

E2(X ) f (x) dx

=

∫
x∈X

x2 f (x) dx︸ ︷︷ ︸
=E(X2)

− 2E(X )

∫
x∈X

x f (x) dx︸ ︷︷ ︸
=E(X)

+ E2(X )

∫
x∈X

f (x) dx︸ ︷︷ ︸
=1

= E(X 2) − 2E2(X ) + E2(X ) = E(X 2) − E2(X )



Espérance de la loi uniforme discrète

Pour la loi uniforme ∀k ∈ X = [1, . . . ,n], P(X = k) = 1
n :

E(X ) =
∑
k∈X

k P(X = k)

=

n∑
k=1

k
1
n

=
1
n

n∑
k=1

k

=
1
n

n(n + 1)
2

=
n + 1

2



Espérance de la loi de Bernoulli

Pour la loi de Bernoulli : x = 0,1 P(X = x) = px (1 − p)(1−x) :

E(X ) =
∑
x∈X

x P(X = x)

=

1∑
x=0

x px (1 − p)(1−x)

= 0 p0 (1 − p)(1−0)︸ ︷︷ ︸
si x=0

+ 1 p1 (1 − p)(1−1)︸ ︷︷ ︸
si x=1

= p



Espérance de la loi Binomiale

Pour la loi Binomiale : ∀k ∈ [0, . . . ,n], P(X = k) = Ck
n pk (1 − p)(n−k)

(indication : kCk
n = nCk−1

n−1 ) :

E(X ) =
∑
k∈X

k P(X = k)

=

n∑
k=0

k Ck
n pk (1 − p)(n−k)

=

n∑
k=1

k Ck
n pk (1 − p)(n−k)



Utilisons : kCk
n = nCk−1

n−1 Remarquons que :

kCk
n = k

n!
k !(n − k)!

= k
n!

k × (k − 1)!(n − k)!

=
n!

(k − 1)!(n − k)!

=
n × (n − 1)!

(k − 1)!(n − k +1 − 1︸ ︷︷ ︸
=0

)!

= n
(n − 1)!

(k − 1)!(n − 1 − (k − 1))!︸ ︷︷ ︸
= nCk−1

n−1

Ce résultat est intéressant et pourra être réutilisé : kCk
n = nCk−1

n−1 ,
(k − 1)Ck−1

n−1 = (n − 1)Ck−2
n−2 , (k − 2)Ck−2

n−2 = (n − 2)Ck−3
n−3 , . . .



On remplace dans l’expression qui nous intéresse pour se rapprocher du
binôme de Newton :

E(X ) =

n∑
k=1

k Ck
n pk (1 − p)(n−k)

=

n∑
k=1

nCk−1
n−1 pk (1 − p)(n−k)

= n
n∑

k=1

Ck−1
n−1 pk (1 − p)(n−k)



On y est presque :

E(X ) = n
n∑

k=1

Ck−1
n−1 pk (1 − p)(n−k)

Posons le changement d’indice suivant : i = k − 1 ⇔ k = i + 1.
Quand k = 1, i = 0.
Quand k = n, i = n − 1.
Il ne reste plus qu’à remplacer tous les k − 1 dans l’expression :

E(X ) = n
n−1∑
i=0

C i
n−1 pi+1 (1 − p)n−(1+i)

= np
n−1∑
i=0

C i
n−1 pi (1 − p)(n−1)−i

︸ ︷︷ ︸
On reconnaı̂t le binôme de Newton réécrit pour la puissance n − 1. On a
donc :

E(X ) = np [p + (1 − p)]n−1

= np × 1n−1

= np



Espérance de la loi de Poisson

Pour la loi de Poisson : ∀k ∈ [0,+∞[, P(X = k) = λk e−λ

k! :

E(X ) =
∑
k∈X

k P(X = k)

=

+∞∑
k=0

k e−λ λ
k

k !

=

+∞∑
k=1

k e−λ λ
k

k !

= e−λ

+∞∑
k=1

k
λk

k × (k − 1)!

= e−λ

+∞∑
k=1

λk

(k − 1)!

= e−λ

+∞∑
k=1

λ× λk−1

(k − 1)!

= e−λλ

+∞∑
k=1

λk−1

(k − 1)!



E(X ) = e−λλ

+∞∑
k=1

λk−1

(k − 1)!

A nouveau petit changement d’indice : i = k − 1.
Quand k = 1, i = 0.
Quand k = +∞, i = +∞.
Il ne reste plus qu’à remplacer les k − 1 dans l’expression pour utiliser le DL :

E(X ) = e−λλ

+∞∑
i=0

λi

i!︸ ︷︷ ︸
= λe−λeλ

= λ



Variance des lois discrètes classiques

On va commencer par utiliser V(X ) = E(X 2) − E2(X ) car on a déjà calculé
E(X ).

Pour les deux dernières lois, on verra qu’il est plus simple d’utiliser
V(X ) = E [X (X − 1)] + E(X ) − E2(X ).



Variance de la loi uniforme discrète

Pour la loi uniforme ∀k ∈ X = [1, . . . ,n], P(X = k) = 1
n :

Commençons par calculer E(X 2).

E(X 2) =
∑
k∈X

k2 P(X = k)

=

n∑
k=1

k2 1
n

=
1
n

n∑
k=1

k2

=
1
n

n(n + 1)(2n + 1)
6

=
(n + 1)(2n + 1)

6



Pour la variance :

V(X ) = E(X 2) − E2(X )

=
(n + 1)(2n + 1)

6
−

(
n + 1

2

)2

=
(n + 1)(2n + 1)

6
−

(n + 1)2

4

=
2(n + 1)(2n + 1) − 3(n + 1)2

12

=
(n + 1) [2(2n + 1) − 3(n + 1)]

12

=
(n + 1) [4n + 2 − 3n − 3)]

12

=
(n + 1)(n − 1)

12

=
n2 − 1

12



Variance de la loi de Bernoulli

Pour la loi de Bernoulli : x = 0,1 P(X = x) = px (1 − p)(1−x) :

E(X 2) =
∑
x∈X

x2 P(X = x)

=

1∑
x=0

x2 px (1 − p)(1−x)

= 02 p0 (1 − p)(1−0) + 12 p1 (1 − p)(1−1)

= p

Pour la variance :

V(X ) = E(X 2) − E2(X )

= p − p2

= p(1 − p)



Variance de la loi Binomiale

Pour la loi Binomiale : ∀k ∈ [0, . . . ,n], P(X = k) = Ck
n pk (1 − p)(n−k),

utilisons V(X ) = E [X (X − 1)] + E(X ) − E2(X ).

E [X (X − 1)] =
∑
k∈X

k(k − 1) P(X = k)

=

n∑
k=0

k(k − 1) Ck
n pk (1 − p)(n−k)

=

n∑
k=2

k(k − 1) Ck
n pk (1 − p)(n−k)

car pour k = 0 et k = 1, le terme générique s’annule.



Il est facile de réutiliser l’astuce de l’espérance et de montrer que :

kCk
n = nCk−1

n−1

(k − 1)Ck−1
n−1 = (n − 1)Ck−2

n−2

Remplaçons :

E [X (X − 1)] =
n∑

k=2

k(k − 1) Ck
n pk (1 − p)n−k

=

n∑
k=2

n(n − 1)Ck−2
n−2 pk (1 − p)n−k

= n(n − 1)
n∑

k=2

Ck−2
n−2 pk (1 − p)n−k



E [X (X − 1)] = n(n − 1)
n∑

k=2

Ck−2
n−2 pk (1 − p)n−k

Pour se ramener au binôme de Newton cette fois pour une puissance n − 2,
on fait le changement d’indice suivant : i = k − 2. Quand k = 2, i = 0. Quand
k = n, i = n − 2. Il ne reste plus qu’à remplacer dans l’expression :

E [X (X − 1)] = n(n − 1)
n∑

k=2

Ck−2
n−2 pk (1 − p)n−k

= n(n − 1)
n−2∑
i=0

C i
n−2 pi+2 (1 − p)n−(i+2)

= n(n − 1)
n−2∑
i=0

C i
n−2 pip2 (1 − p)n−2−i

= n(n − 1)p2
n−2∑
i=0

C i
n−2 pi (1 − p)(n−2)−i

︸ ︷︷ ︸
= n(n − 1)p2 × (p + 1 − p)n−2︸ ︷︷ ︸

=1

= n(n − 1)p2



Reste à calculer la variance :

V(X ) = E [X (X − 1)] + E(X ) − E2(X )

= n(n − 1)p2 + np − (np)2

= n2p2 − np2 + np − n2p2

= np − np2

= np(1 − p)



Variance de la loi de Poisson

Pour la loi de Poisson : ∀k ∈ [0,+∞[, P(X = k) = λk e−λ

k! :

E [X (X − 1)] =
∑
k∈X

k(k − 1) P(X = k)

=

+∞∑
k=0

k(k − 1) e−λ λ
k

k !

=

+∞∑
k=2

k(k − 1) e−λ λ
k

k !

=

+∞∑
k=2

k(k − 1) e−λ λ2λk−2

k × (k − 1)× (k − 2)!

= e−λλ2
+∞∑
k=2

λk−2

(k − 2)!



A nouveau petit changement d’indice : i = k − 2. Quand k = 2, i = 0. Quand
k = +∞, i = +∞. Il ne reste plus qu’à remplacer dans l’expression.

E [X (X − 1)] = e−λλ2
+∞∑
k=2

λk−2

(k − 2)!

= e−λλ2
+∞∑
i=0

λi

i!

= e−λλ2eλ

= λ2

Reste à calculer la variance :

V(X ) = E [X (X − 1)] + E(X ) − E2(X )

= λ2 + λ− λ2

= λ



Espérance de la loi uniforme continue

f (x) =

{
1

b−a ∀x ∈ [a,b]
0 sinon

E(X ) =

∫
x∈X

x × f (x) dx

=

∫b

a
x × 1

b − a
dx

=
1

b − a

∫b

a
x dx

=
1

b − a

[
1
2
× x2

]b

a

=
1

2(b − a)
[
b2 − a2]

=
(b − a)(b + a)

2(b − a)

=
a + b

2



Espérance de la loi exponentielle

f (x) =

{
λe−λx ∀x > 0, λ > 0
0 sinon

E(X ) =

∫
x∈X

x × f (x) dx

=

∫+∞
0

x × λe−λx dx

Pas de primitive évidente.

On va avoir recours à une intégration par parties.



Intégration par parties

(u(x) v(x)) ′ = u ′(x)× v(x) + u(x)× v ′(x)

⇔
∫b

a
(u(x) v(x)) ′ dx =

∫b

a
u ′(x)× v(x) dx +

∫b

a
u(x)× v ′(x) dx

⇔ [u(x)× v(x)]ba =

∫b

a
u ′(x)× v(x) dx +

∫b

a
u(x)× v ′(x) dx

⇔
∫b

a
u ′(x)× v(x) dx = [u(x)× v(x)]ba −

∫b

a
u(x)× v ′(x) dx

On décompose la fonction de gauche qui n’a pas de primitive évidente en

- une fonction de primitive évidente : u ′(x) ;

- et telle que u(x)× v ′(x) ait une primitive évidente.

Reste à définir qui est u ′(x) et qui est v(x)...



Intégration par parties

∫b

a
u ′(x)× v(x) dx = [u(x)× v(x)]ba −

∫b

a
u(x)× v ′(x) dx

E(X ) =

∫+∞
0

x × λe−λx dx

Posons : u ′(x) = λe−λx qui a une primitive évidente et donc v(x) = x .

On en déduit : u(x) = −e−λx et v ′(x) = 1.

E(X ) =
[
−xe−λx]+∞

0 −

∫+∞
0

− e−λx dx

= lim
x→+∞

(
−xe−λx) −

(
−0 × e−λ×0) +

∫+∞
0

e−λx dx

=

[
−

1
λ

e−λx
]+∞

0

=
1
λ

[
−e−λx]+∞

0

=
1
λ

[
lim

x→+∞
(
−e−λx) −

(
−e−λ×0)] =

1
λ



Variance de la loi uniforme continue

f (x) =

{
1

b−a ∀x ∈ [a,b]
0 sinon

E(X 2) =

∫
x∈X

x2 × f (x) dx

=

∫b

a
x2 × 1

b − a
dx

=
1

b − a

∫b

a
x2 dx

=
1

b − a

[
1
3
× x3

]b

a

=
1

3(b − a)
[
b3 − a3]

=
(a2 + ab + b2)(b − a)

3(b − a)

=
a2 + ab + b2

3



On en déduit la variance :

V(X ) = E(X 2) − E2(X )

=
a2 + ab + b2

3
−

(
a + b

2

)2

=
4
(
a2 + ab + b2

)
− 3 (a + b)2

12

=
4a2 + 4ab + 4b2 − 3a2 − 6ab − 3b2

12

=
a2 − 2ab + b2

12

=
(b − a)2

12



Variance de la loi exponentielle

f (x) =

{
λe−λx ∀x > 0, λ > 0
0 sinon

E(X 2) =

∫
x∈X

x2 × f (x) dx

=

∫+∞
0

x2 × λe−λx dx

Pas de primitive évidente.

On va avoir recours à une intégration par parties.



∫b

a
u ′(x)× v(x) dx = [u(x)× v(x)]ba −

∫b

a
u(x)× v ′(x) dx

E(X 2) =

∫+∞
0

x2 × λe−λx dx

Posons : u ′(x) = λe−λx qui a une primitive évidente et donc v(x) = x2.

On en déduit : u(x) = −e−λx et v ′(x) = 2x .

E(X 2) =
[
−x2e−λx]+∞

0 −

∫+∞
0

−2xe−λx dx

= lim
x→+∞

(
−x2e−λx) −

(
−02 × e−λ×0) +

∫+∞
0

2xe−λx dx

=

∫+∞
0

2xe−λx dx

pas de primitive connue. Donc soit on refait une intégration par parties, soit
on remarque la ressemblance avec l’expression de l’espérance...



E(X 2) =

∫+∞
0

2xe−λx dx

=
λ

λ

∫+∞
0

2xe−λx dx

=
2
λ

∫+∞
0

xλe−λx dx

=
2
λ
E(X )

=
2
λ
× 1

λ

=
2
λ2



On en déduit la variance :

V(X ) = E(X 2) − E2(X )

=
2
λ2 −

(
1
λ

)2

=
1
λ2



VIII- Exercices de récapitulation



Exercice récapitulatif 1

Pour déterminer k , supposons que f soit une densité, c’est-à-dire∫+∞
−∞ f (x)dx = 1. Manipulons le membre de droite :∫+∞

−∞ f (x)dx =

∫+∞
θ

kx−αdx

= k
∫+∞
θ

x−αdx

= k
[

1
−α+ 1

x−α+1
]+∞
θ

=
k

1 − α

[
1

xα−1

]+∞
θ

=
k

1 − α

[
0 −

1
θα−1

]
puisque α− 1 > 0

=
k

(α− 1)θα−1

En égalisant à 1, on trouve donc :

k
(α− 1)θα−1 = 1 ⇔ k = (α− 1)θα−1 > 0, ce qui est cohérent.



E(X ) =

∫+∞
−∞ xf (x)dx

=

∫+∞
θ

x(α− 1)θα−1x−αdx

= (α− 1)θα−1
∫+∞
θ

x−α+1dx

= (α− 1)θα−1
[

1
−α+ 2

x−α+2
]+∞
θ

=
(α− 1)θα−1

2 − α

[
1

xα−2

]+∞
θ

=
(α− 1)θα−1

2 − α

[
0 −

1
θα−2

]
puisque α− 2 > 0

=
(α− 1)θα−1

(α− 2)θα−2

=
α− 1
α− 2

θα−1−(α−2)

=
α− 1
α− 2

θ



E(X 2) =

∫+∞
−∞ x2f (x)dx

=

∫+∞
θ

x2(α− 1)θα−1x−αdx

= (α− 1)θα−1
∫+∞
θ

x−α+2dx

= (α− 1)θα−1
[

1
−α+ 3

x−α+3
]+∞
θ

=
(α− 1)θα−1

3 − α

[
1

xα−3

]+∞
θ

=
(α− 1)θα−1

3 − α

[
0 −

1
θα−3

]
puisque α− 3 > 0

=
(α− 1)θα−1

(α− 3)θα−3

=
α− 1
α− 3

θ2



V(X ) = E(X 2) − E2(X )

=
α− 1
α− 3

θ2 −

(
α− 1
α− 2

)2

θ2

=

(
1

α− 3
−

α− 1
(α− 2)2

)
(α− 1)θ2

=

(
(α− 2)2 − (α− 1)(α− 3)

(α− 3)(α− 2)2

)
(α− 1)θ2

=

(
α2 − 4α+ 4 − (α2 − 4α+ 3)

(α− 3)(α− 2)2

)
(α− 1)θ2

=
α− 1

(α− 3)(α− 2)2 θ
2



F (x) =
∫ x

−∞ f (u)du

=

∫ x

θ

(α− 1)θα−1u−αdu si x ⩾ θ

= (α− 1)θα−1
∫ x

θ

u−αdu

= (α− 1)θα−1
[

1
−α+ 1

u−α+1
]x

θ

=
(α− 1)θα−1

1 − α

[
1

uα−1

]x

θ

=
(α− 1)θα−1

1 − α

[
1

xα−1 −
1

θα−1

]
= θα−1

[
1

θα−1 −
1

xα−1

]
= 1 −

θα−1

xα−1



F (x) =

{
0 si x < θ

1 − θα−1

xα−1 si x⩾ θ



Exercice récapitulatif 2

f (x) =


1 + x ∀x ∈ [−1,0]
1 − x ∀x ∈ [0,1]
0 sinon

est-elle une densité de probabilités?

1. La fonction doit être positive ou nulle :
si x ∈ [−1,0], f (x) = 1 + x ∈ [0,1]
si x ∈ [0,1], f (x) = 1 − x ∈ [0,1]
partout ailleurs, f (x) = 0

2. La fonction doit être continue sauf éventuellement en un nombre fini de
points : les cas à examiner ici sont les bornes des intervalles, c-à-d −1, 0 et
+1 :

si x = −1, f (−1−) = 0 et f (−1+) = 1 + (−1) = 0 donc continue en −1.
si x = 0, f (0−) = 1 + 0 = 1 et f (0+) = 1 − 0 = 1 donc continue en 0.
si x = +1, f (1−) = 1 − 1 = 0 et f (1+) = 0 donc continue en +1.

3. Il faut que
∫+∞
−∞ f (x)dx = 1.



∫+∞
−∞ f (x)dx =

∫−1

−∞ f (x)dx +

∫0

−1
f (x)dx +

∫1

0
f (x)dx +

∫+∞
1

f (x)dx

= 0 +

∫0

−1
(1 + x)dx +

∫1

0
(1 − x)dx + 0

=

[
x +

1
2

x2
]0

−1
+

[
x −

1
2

x2
]1

0

= 0 −

(
−1 +

1
2
(−1)2

)
+

(
1 −

1
2
(1)2

)
− 0

= 1 −
1
2
+ 1 −

1
2
= 1



F ( x ) =

∫ x

−∞ f ( t )d t

si x ∈ [−1,0], F (x) =
∫ x

−∞ f (t)dt

=

∫ x

−1
f (t)dt

=

∫ x

−1
(1 + t)dt

=

[
t +

1
2

t2
]x

−1

=

(
x +

1
2

x2
)
−

(
(−1) +

1
2
(−1)2

)
= x +

1
2

x2 + 1 −
1
2

= x +
1
2

x2 +
1
2



si x ∈ [0,1], F (x) =
∫ x

−∞ f (t)dt

=

∫0

−1
f (t)dt +

∫ x

0
f (t)dt

=

∫0

−1
(1 + t)dt +

∫ x

0
(1 − t)dt

=

[
t +

1
2

t2
]0

−1
+

[
t −

1
2

t2
]x

0

= 0 −

(
(−1) +

1
2
(−1)2

)
+

(
x −

1
2

x2
)
− 0

= +1 −
1
2
+ x −

1
2

x2

= x −
1
2

x2 +
1
2



On a donc :

F (x) =


0 si x < −1
x + 1

2 x2 + 1
2 si x ∈ [−1,0]

x − 1
2 x2 + 1

2 si x ∈ [0,1]
1 si x > 1



E(X ) =

∫+∞
−∞ xf (x)dx

=

∫0

−1
xf (x)dx +

∫1

0
xf (x)dx

=

∫0

−1
x(1 + x)dx +

∫1

0
x(1 − x)dx

=

[
1
2

x2 +
1
3

x3
]0

−1
+

[
1
2

x2 −
1
3

x3
]1

0

= 0 −

(
1
2
(−1)2 +

1
3
(−1)3

)
+

(
1
2
(1)2 −

1
3
(1)3

)
− 0

= −
1
2
+

1
3
+

1
2
−

1
3
= 0



E(X 2) =

∫+∞
−∞ x2f (x)dx

=

∫0

−1
x2f (x)dx +

∫1

0
x2f (x)dx

=

∫0

−1
x2(1 + x)dx +

∫1

0
x2(1 − x)dx

=

[
1
3

x3 +
1
4

x4
]0

−1
+

[
1
3

x3 −
1
4

x4
]1

0

= 0 −

(
1
3
(−1)3 +

1
4
(−1)4

)
+

(
1
3
(1)3 −

1
4
(1)4

)
− 0

= +
1
3
−

1
4
+

1
3
−

1
4
=

1
6

Donc comme V(X ) = E(X 2) − E2(X ), V(X ) =
1
6



Partie 1 : les couples de VA



I- Couples de VAD



Loi de probabilités d’un couple de VAD

Soit (X ,Y ) un couple de variables aléatoires discrètes de loi de probabilités
jointe P(X = x ,Y = y) définie pour un ensemble de définition (x , y) ∈ X× Y.

Pour une variable, on parlait d’une loi de probabilités jointe :

∀x ∈ X, P(X = x) = P(X = x) ⩾ 0∑
x∈X

P(X = x) = 1

Pour un couple, on parle de loi de probabilités jointe. Comme précédemment,
les probabilités sont positives et somment à 1 sur l’ensemble des possibles.

∀(x , y) ∈ X× Y, P(X = x ,Y = y) = P(X = x ∩ Y = y) ⩾ 0∑
x∈X

∑
y∈Y

P(X = x ,Y = y) = 1



Principaux moments théoriques

L’espérance :

E(X ) =
∑
x∈X

x P(X = x)

E(XY ) =
∑
x∈X

∑
y∈Y

xyP(X = x ,Y = y)

La variance :

V(X ) =
∑
x∈X

[x − E(X )]2 P(X = x)

V(XY ) =
∑
x∈X

∑
y∈Y

[xy − E(XY )]
2 P(X = x ,Y = y)



Lois marginales associées

Définir les lois marginales de X et Y , leur espérance et leur variance.

Les lois marginales de X et Y :

P(X = x) =
∑
y∈Y

P(X = x ,Y = y)

P(Y = y) =
∑
x∈X

P(X = x ,Y = y)



Espérances des lois marginales associées

Leurs espérances en repartant des formules déjà rencontrées :

E(X ) =
∑
x∈X

x P(X = x)

=
∑
x∈X

x
∑
y∈Y

P(X = x ,Y = y)

=
∑
x∈X

∑
y∈Y

xP(X = x ,Y = y)

E(Y ) =
∑
y∈Y

y P(Y = y)

=
∑
y∈Y

y
∑
x∈X

P(X = x ,Y = y)

=
∑
y∈Y

∑
x∈X

y P(X = x ,Y = y)



Variances des lois de probabilités marginales associées

Leurs variances :

V(X ) =
∑
x∈X

[x − E(X )]2 P(X = x)

=
∑
x∈X

[x − E(X )]2
∑
y∈Y

P(X = x ,Y = y)

=
∑
x∈X

∑
y∈Y

[x − E(X )]2 P(X = x ,Y = y)

V(Y ) =
∑
y∈Y

[y − E(Y )]2 P(Y = y)

=
∑
y∈Y

[y − E(Y )]2
∑
x∈X

P(X = x ,Y = y)

=
∑
y∈Y

∑
x∈X

[y − E(Y )]2 P(X = x ,Y = y)



Application

y
1 2 3 4

x
-2 0.1 0.3 0.1 0
0 0.1 0 0.1 0.1
2 0 0.1 c 0.1

Si c’est une loi de probabilités jointe, on va déterminer la valeur de c en
utilisant la sommation à 1 des probabilités sur l’ensemble des possibles.∑

x∈X

∑
y∈Y

P(X = x ,Y = y) = 1

⇔0.1 + 0.3 + 0.1 + 0 + 0.1 + 0 + 0.1 + 0.1 + 0 + 0.1 + c + 0.1 = 1

⇔c = 1 − 1 = 0



Somme de lois

Caractérisez la loi de probabilités de X + Y .

Appelons Z la nouvelle VAD telle que Z = X + Y .
Construisons l’ensemble des possibles de Z . Pour cela, on calcule

∀x ∈ X,∀y ∈ Y, z = x + y

+ y
1 2 3 4

x
-2 -1 0 1 2
0 1 2 3 4
2 3 4 5 6

Les valeurs possibles de z (on ne répète pas celles qui apparaissent
plusieurs fois) sont donc {−1,0,1,2,3,4,5,6}.



Conditionnement

Pour finir de construire la loi de Z , il faut maintenant calculer la loi de chaque
occurrence.

P(Z = −1) = P(X = −2 ∩ Y = 1) = 0.1

P(Z = 0) = P(X = −2 ∩ Y = 2) = 0.3

P(Z = 1) = P [(X = −2 ∩ Y = 3) ∪ (X = 0 ∩ Y = 1)]

= P(X = −2 ∩ Y = 3) + P(X = 0 ∩ Y = 1)

= 0.1 + 0.1 = 0.2

P(Z = 2) = P [(X = −2 ∩ Y = 4) ∪ (X = 0 ∩ Y = 2)]

= P(X = −2 ∩ Y = 4) + P(X = 0 ∩ Y = 2)

= 0 + 0 = 0

. . .

On en déduit la loi de probabilités de Z :

z -1 0 1 2 3 4 5 6
P(Z = z) 0.1 0.3 0.2 0 0.1 0.2 0 0.1



Caractérisez la loi de probabilités conditionnelle Y |X = 0.

Repartons du tableau des probabilités jointes et faisons apparaı̂tre les
probabilités marginales P(X = x) =

∑
y∈Y P(X = x ,Y = y) et

P(Y = y) =
∑

x∈X P(X = x ,Y = y) en sommant par ligne et par colonne :

y
1 2 3 4 P(X = x)

x
-2 0.1 0.3 0.1 0 0.5
0 0.1 0 0.1 0.1 0.3
2 0 0.1 0 0.1 0.2

P(Y = y) 0.2 0.4 0.2 0.2 1

P(Y |X = 0) s’obtient par la formule de Bayes :

P(Y = y |X = 0) =
P(Y = y ∩ X = 0)

P(X = 0)

Elle veut dire que maintenant, on ne s’intéresse plus à la distribution de Y
que pour X = 0. Il vient :

y |X = 0 1 2 3 4
P(Y = y |X = 0) 0.1

0.3
0

0.3
0.1
0.3

0.1
0.3



Caractérisez la loi de probabilités conditionnelle X |Y = 1.

y
1 2 3 4 P(X = x)

x
-2 0.1 0.3 0.1 0 0.5
0 0.1 0 0.1 0.1 0.3
2 0 0.1 0 0.1 0.2

P(Y = y) 0.2 0.4 0.2 0.2 1

Même raisonnement qu’à la question précédente. La formule de Bayes nous
dit :

P(X = x |Y = 1) =
P(X = x ∩ Y = 1)

P(Y = 1)

soit la distribution de X quand Y = 1. Il vient :

x |Y = 1 -2 0 2
P(X = x |Y = 1) 0.1

0.2
0.1
0.2

0
0.2



Un moment théorique important : la covariance

Soient X et Y deux variables aléatoires discrètes de loi de probabilités jointe
P(X = x ,Y = y) avec (x , y) ∈ X× Y.

On définit l’opérateur Covariance comme :

Cov(X ,Y ) = E
{
[X − E(X )][Y − E(Y )]

}
=

∑
x∈X

∑
y∈Y

[x − E(X )][y − E(Y )]P(X = x ,Y = y)



Montrez que Cov(X ,Y ) = E(XY ) − E(X ) E(Y ).

Cov(X ,Y ) = E{[X − E(X )][Y − E(Y )]}

= E [XY − YE(X ) − XE(Y ) + E(X )E(Y )]

= E(XY ) − E [YE(X )] − E [XE(Y )] + E [E(X )E(Y )]

= E(XY ) − E(X )E(Y ) − E(Y )E(X ) + E(X )E(Y )

= E(XY ) − E(X )E(Y )



Cov(X ,Y) =
∑
x∈X

∑
y∈Y

[x − E(X)][y − E(Y)]P(X = x ,Y = y)

=
∑
x∈X

∑
y∈Y

[xyP(X = x ,Y = y) − yE(X)P(X = x ,Y = y)

− xE(Y)P(X = x ,Y = y) + E(X)E(Y)P(X = x ,Y = y)]

=
∑
x∈X

∑
y∈Y

xyP(X = x ,Y = y) −
∑
x∈X

∑
y∈Y

yE(X)P(X = x ,Y = y)

−
∑
x∈X

∑
y∈Y

xE(Y)P(X = x ,Y = y) +
∑
x∈X

∑
y∈Y

E(X)E(Y)P(X = x ,Y = y)

=
∑
x∈X

∑
y∈Y

xyP(X = x ,Y = y) − E(X)
∑
y∈Y

y
∑
x∈X

P(X = x ,Y = y)︸ ︷︷ ︸
=P(Y=y)

− E(Y)
∑
x∈X

x
∑
y∈Y

P(X = x ,Y = y)

︸ ︷︷ ︸
=P(X=x)

+ E(X)E(Y)
∑
x∈X

∑
y∈Y

P(X = x ,Y = y)

︸ ︷︷ ︸
=1



Cov(X ,Y ) =
∑
x∈X

∑
y∈Y

xyP(X = x ,Y = y)︸ ︷︷ ︸
=E(XY)

− E(X )
∑
y∈Y

yP(Y = y)︸ ︷︷ ︸
=E(Y)

− E(Y )
∑
x∈X

xP(X = x)︸ ︷︷ ︸
=E(X)

+ E(X )E(Y )

= E(XY ) − E(X )E(Y )−E(Y )E(X ) + E(X )E(Y )︸ ︷︷ ︸
=0

= E(XY ) − E(Y )E(X )



Que vaut Cov(X ,X )?

En repartant de Cov(X ,Y ) = E(XY ) − E(Y )E(X ) et en posant X = Y :

Cov(X ,X ) = E(XX ) − E(X )E(X )

= E(X 2) − E2(X )

≡ V(X )



Que vaut Cov(aX ,bY )?

Cov(aX ,bY ) = E{[aX − E(aX )][bY − E(bY )]}

= E{[aX − aE(X )][bY − bE(Y )]}

= E{a[X − E(X )]b[Y − E(Y )]}

= ab E{[X − E(X )][Y − E(Y )]}︸ ︷︷ ︸
= ab Cov(X ,Y )



Ou en replongeant dans les sommes :

Cov(aX ,bY ) =
∑
x∈X

∑
y∈Y

[ax − E(aX )][by − E(bY )] P(X = x ,Y = y)

=
∑
x∈X

∑
y∈Y

[ax − aE(X )][by − bE(Y )] P(X = x ,Y = y)

=
∑
x∈X

∑
y∈Y

ab[x − E(X )][y − E(Y )] P(X = x ,Y = y)

= ab
∑
x∈X

∑
y∈Y

[x − E(X )][y − E(Y )] P(X = x ,Y = y)︸ ︷︷ ︸
= ab Cov(X ,Y )



Covariance de deux VAD indépendantes

Que vaut Cov(X ,Y ) si les deux variables aléatoires X et Y sont
indépendantes en probabilités?

L’indépendance en probabilités implique :

P(X = x ∩ Y = y) = P(X = x)P(Y = y)

Donc :

E(XY ) =
∑
x∈X

∑
y∈Y

xy P(X = x ,Y = y)

=
∑
x∈X

∑
y∈Y

xy P(X = x) P(Y = y)

=
∑
x∈X

xP(X = x)
∑
y∈Y

yP(Y = y)

= E(X ) E(Y )

Comme :
Cov(X ,Y ) = E(XY ) − E(Y )E(X )

= 0 si indépendance



Autre façon avec les sommes :

Cov(X ,Y ) =
∑
x∈X

∑
y∈Y

[x − E(X )][y − E(Y )] P(X = x ,Y = y)

=
∑
x∈X

∑
y∈Y

[x − E(X )][y − E(Y )] P(X = x) P(Y = y)

=
∑
x∈X

[x − E(X )]P(X = x)
∑
y∈Y

[y − E(Y )]P(Y = y)

= E[X − E(X )] E[Y − E(Y )]

= [E(X ) − E(X )] [E(Y ) − E(Y )]

= 0



Variance d’une somme de VAD

Toujours dans ce cas, calculez V(X + Y ). Comme

V(X ) =
∑
x∈X

[x − E(X )]2 P(X = x)

il vient :

V(X + Y) =
∑

x∈X

∑
y∈Y

[x + y − E(X + Y)]2 P(X = x ,Y = y)

=
∑

x∈X

∑
y∈Y

{[x + y − E(X) − E(Y)]}2 P(X = x ,Y = y)

=
∑

x∈X

∑
y∈Y

{[x − E(X)] + [y − E(Y)]}2 P(X = x ,Y = y)

=
∑

x∈X

∑
y∈Y

{[x − E(X)]2 + [y − E(Y)]2 + 2[x − E(X)][y − E(Y)]} P(X = x ,Y = y)

=
∑

x∈X

∑
y∈Y

[x − E(X)]2P(X = x ,Y = y) +
∑

x∈X

∑
y∈Y

[y − E(Y)]2P(X = x ,Y = y)

+
∑

x∈X

∑
y∈Y

2[x − E(X)][y − E(Y)]P(X = x ,Y = y)



V(X + Y) =
∑
x∈X

[x − E(X)]2

=P(X=x)︷ ︸︸ ︷∑
y∈Y

P(X = x ,Y = y)+
∑
y∈Y

[y − E(Y)]2

=P(Y=y)︷ ︸︸ ︷∑
x∈X

P(X = x ,Y = y)

+ 2
∑
x∈X

∑
y∈Y

[x − E(X)][y − E(Y)]P(X = x ,Y = y)

=

=V(X)︷ ︸︸ ︷∑
x∈X

[x − E(X)]2P(X = x) +

V(Y)︷ ︸︸ ︷∑
y∈Y

[y − E(Y)]2P(Y = y)

+ 2
∑
x∈X

∑
y∈Y

[x − E(X)][y − E(Y)]P(X = x ,Y = y)

︸ ︷︷ ︸
=Cov(X ,Y)

= V(X) + V(Y) + 2 Cov(X ,Y)



Si les deux VA sont indépendantes en probabilités : Cov(X ,Y ) = 0 donc

V(X + Y ) = V(X ) + V(Y )



II- Couples de VAC



Densité jointe d’un couple de VAC

Comment sait-on qu’on est en présence d’une densité de probabilités d’un
couple de VAC?

Loi de probabilités pour un couple de VAD :

- ∀(x , y) ∈ X× Y, P(X = x ,Y = y) = P(X = x ∩ Y = y) ⩾ 0.

-
∑

x∈X

∑
y∈Y P(X = x ,Y = y) = 1.

Une densité de probabilités de couple de VAC vérifie les conditions
suivantes :

- ∀(x , y) ∈ X× Y, fX ,Y (x , y) ⩾ 0.

- C’est une fonction continue (sauf éventuellement en un nombre fini de
points).

-
∫

x∈X

∫
y∈Y

fX ,Y (x , y) dxdy = 1.



Exemple



Exemple



Soit (X ,Y ) un couple de variables aléatoires continues de densité de

probabilités jointe fX ,Y (x , y) =

{
cxy ∀(x , y) ∈ [0,4]× [1,5]
0 sinon

.

Pour déterminer c (une inconnue), il faut une équation :∫
x∈X

∫
y∈Y

fX ,Y (x , y) dxdy = 1 ⇔
∫4

x=0

∫5

y=1
cxy dxdy = 1

⇔ c
∫4

x=0

∫5

y=1
xy dxdy = 1

⇔ c
∫4

0
x dx

∫5

1
y dy = 1

⇔ c
[

1
2

x2
]4

0

[
1
2

y2
]5

1
= 1

⇔ c × 1
2
(42 − 02)× 1

2
(52 − 12) = 1

⇔ c × 8 × 12 = 1

⇔ c =
1
96



L’espérance du couple

Définir l’espérance.

VAD : E(XY ) =
∑
x∈X

∑
y∈Y

xyP(X = x ,Y = y)

VAC : E(XY ) =

∫
x∈X

∫
y∈Y

xyfX ,Y (x , y)dxdy



La variance du couple

Définir la variance.

VAD : V(XY ) =
∑
x∈X

∑
y∈Y

[xy − E(XY )]
2 P(X = x ,Y = y)

VAC : V(XY ) =

∫
x∈X

∫
y∈Y

[xy − E(XY )]
2 fX ,Y (x , y)dxdy



Les densités marginales associées

Définir les lois marginales de X et Y , leur espérance et leur variance.

Les lois marginales de X et Y :

VAD : P(X = x) =
∑
y∈Y

P(X = x ,Y = y)

VAC : fX (x) =
∫

y∈Y

fX ,Y (x , y)dy

VAD : P(Y = y) =
∑
x∈X

P(X = x ,Y = y)

VAC : fY (y) =
∫

x∈X

fX ,Y (x , y)dx



Fonctions de répartition jointe et marginales

La fonction de répartition F (.).

FX ,Y (x , y) =
∫ x

−∞
∫ y

−∞ fX ,Y (u, v)dudv

FX (x) =
∫ x

−∞ fX (u)du =

∫ x

−∞
∫+∞
−∞ fX ,Y (u, y)dudy

FY (y) =
∫ y

−∞ fY (u)du =

∫+∞
−∞

∫ y

−∞ fX ,Y (x ,u)dxdu



Retour sur la covariance

VAD : Cov(X ,Y ) =
∑
x∈X

∑
y∈Y

[x − E(X )][y − E(Y )]P(X = x ,Y = y)

VAC : Cov(X ,Y ) =

∫
x∈X

∫
y∈Y

[x − E(X )][y − E(Y )]fX ,Y (x , y)dxdy



Montrez que Cov(X ,Y ) = E(XY ) − E(X )E(Y ).

Cov(X ,Y ) =

∫
x∈X

∫
y∈Y

[x − E(X )][y − E(Y )]fX ,Y (x , y)dxdy

=

∫
x∈X

∫
y∈Y

[xyfX ,Y (x , y)dxdy − yE(X )fX ,Y (x , y)dxdy

− xE(Y )fX ,Y (x , y)dxdy + E(X )E(Y )fX ,Y (x , y)dxdy ]

=

∫
x∈X

∫
y∈Y

xyfX ,Y (x , y)dxdy −

∫
x∈X

∫
y∈Y

yE(X )fX ,Y (x , y)dxdy

−

∫
x∈X

∫
y∈Y

xE(Y )fX ,Y (x , y)dxdy +

∫
x∈X

∫
y∈Y

E(X )E(Y )fX ,Y (x , y)dxdy

=

∫
x∈X

∫
y∈Y

xyfX ,Y (x , y)dxdy − E(X )

∫
y∈Y

y
∫

x∈X

fX ,Y (x , y)dx︸ ︷︷ ︸
=fY (y)

dy

− E(Y )

∫
x∈X

x
∫

y∈Y

fX ,Y (x , y)dy︸ ︷︷ ︸
=fX (x)

dx + E(X )E(Y )

∫
x∈X

∫
y∈Y

fX ,Y (x , y)dxdy︸ ︷︷ ︸
=1



Cov(X ,Y ) =

∫
x∈X

∫
y∈Y

xyfX ,Y (x , y)dxdy︸ ︷︷ ︸
=E(XY)

− E(X )

∫
y∈Y

yfY (y)dy︸ ︷︷ ︸
=E(Y)

− E(Y )

∫
x∈X

xfX (x)dx︸ ︷︷ ︸
=E(X)

+ E(X )E(Y )

= E(XY ) − E(X )E(Y )−E(Y )E(X ) + E(X )E(Y )︸ ︷︷ ︸
=0

= E(XY ) − E(Y )E(X )



Covariance et indépendance

Que vaut Cov(X ,Y ) si les deux variables aléatoires X et Y sont
indépendantes en probabilités?

L’indépendance en probabilités implique :

fX ,Y (x , y) = fX (x) fY (y)

Donc :

E(XY ) =

∫
x∈X

∫
y∈Y

xyfX ,Y (x , y)dxdy

=

∫
x∈X

∫
y∈Y

xyfX (x)fY (y)dxdy

=

∫
x∈X

xfX (x)dx
∫

y∈Y

yfY (y)dy

= E(X )E(Y )

Comme :
Cov(X ,Y ) = E(XY ) − E(Y )E(X )

= 0 si indépendance



Fonction de répartition et indépendance

fX ,Y (u, v) = fX (u) fY (v)

⇔
∫ x

−∞
∫ y

−∞ fX ,Y (u, v)dudv =

∫ x

−∞
∫ y

−∞ fX (u) fY (v)dudv

⇔
∫ x

−∞
∫ y

−∞ fX ,Y (u, v)dudv︸ ︷︷ ︸
FX ,Y (x ,y)

=

∫ x

−∞ fX (u)du︸ ︷︷ ︸
FX (x)

∫ y

−∞ fY (v)dv︸ ︷︷ ︸
FY (y)



Partie 2 : Inférence statistique



I- Construction d’un estimateur



Exemple de questions

Vous jouez à pile ou face et vous comptez le nombre de pile. Vous disposez
d’un échantillon aléatoire de N tirages (X1,X2, . . . ,XN) pour lesquels vous
observez la réalisation de pile (succès codé 1) (x1, x2, . . . , xN).

- la loi de cette expérience est la loi de Bernoulli : donne la probabilité de
succès (p ∈ [0,1]) ou d’échec (1 − p) de l’expérience.

- On suppose que chaque tirage ou variable aléatoire de l’échantillon suit
la même loi de Bernoulli de paramètre p ∈ [0,1] et quelles sont toutes
indépendantes.

- Loi de probabilités de Bernoulli de paramètre p ∈ [0,1] :

P(Xi = k) = pk (1 − p)1−k

avec k = 0,1 (resp. échec, succès).



Exemple de questions

Vous êtes assureur et vous êtes intéressés par le nombre des sinistres sur
une certaine période. Vous disposez d’un échantillon aléatoire de N clients
(X1,X2, . . . ,XN) pour lesquels vous observez le nombre de sinistres réalisés
(x1, x2, . . . , xN).

- On suppose que la loi sous-jacente est la loi de Poisson (loi des
événements rares comme les accidents).

- On suppose que chaque variable aléatoire de l’échantillon suit la même
loi de Poisson et qu’elles sont toutes indépendantes.

- On suppose donc ici que tout le monde a la même probabilité de
sinistres. . . ! ??

- Sa loi de probabilités :

P(Xi = xi) =
λxi e−λ

xi !

avec xi ∈ N.



Les données

- Echantillon = 1 groupe d’observations tirées ”au hasard” dans la
population

- iid = identiquement et indépendamment distribués

- une observation de l’échantillon xi est une réalisation particulière d’une
Variable Aléatoire (VA) Xi

i 1 2 . . . N
X x1 x2 . . . xN

- Une VA mesure quantitativement le résultat d’une expérience aléatoire
grâce à sa loi de probabilités caractérisée par un ou plusieurs
paramètres.

- Ces paramètres sont inconnus, on va donc chercher à les estimer avec
des outils fiables.



L’estimateur

- L’estimateur est un outil général issu d’un critère d’estimation

- sert à ”deviner” la valeur du paramètre de la loi caractérisant une
population grâce à l’échantillon.

- l’échantillon (X1,X2, . . . ,XN) = ensemble de VA supposées iid.

- le maximum de vraisemblance : ”quelle valeur des paramètres de la loi
permet de maximiser le log de la probabilité de l’échantillon?”

max
?

lnP {(X1 = x1) ∩ (X2 = x2) ∩ · · · ∩ (XN = xN)}

- Permet de déduire une formule générale pour calculer la valeur du ou
des paramètres de la loi sous-jacente au phénomène étudié et suivie
par les VA : l’estimateur

- Permet de calculer une valeur quand appliqué à l’échantillon :
l’estimation



Le maximum de vraisemblance : le cas discret

Soit une suite de n VAD iid (X1,X2, . . . ,Xn).

On a vu que pour deux variables aléatoires X et Y indépendantes en
probabilités, on a :

P{(X = x) ∩ (Y = y)} = P(X = x)× P(Y = y)

On généralise :

P{(X1 = x1) ∩ (X2 = x2)∩ · · · ∩ (Xn = xn)}

= P(X1 = x1)× P(X2 = x2)× · · · × P(Xn = xn)

=

n∏
i=1

P(Xi = xi) =

n∏
i=1

P(X = xi)

En appliquant le logarithme :

ln
{ n∏

i=1

P(X = xi)
}
=

n∑
i=1

ln[P(X = xi)] ≡ L(.)



Le maximum de vraisemblance : le cas continu

Soit une suite de n VAC iid (X1,X2, . . . ,Xn).

On a vu que pour deux VAC X et Y indépendantes en probabilités, on a :

fX ,Y (x , y) = fX (x) fY (y)

Comme indépendantes et identiques,

fX1,X2,...,Xn (x1, x2, . . . , xn) =

n∏
i=1

fXi (xi) =

n∏
i=1

fX (xi)

En appliquant le logarithme :

ln
{ n∏

i=1

fX (xi)
}
=

n∑
i=1

ln[fX (xi)] ≡ L(.)



Le maximum de vraisemblance

On notera de façon générique dans ce qui suit L(θ; x) la fonction à
maximiser.

Elle dépend

- du ou des paramètres inconnus θ qui est soit un scalaire, soit un vecteur
de k paramètres θ = (θ1, θ2, . . . , θk )

′ ;

- des observations de l’échantillon notée x = (x1, x2, . . . , xn)
′ .

Le programme s’écrit :

θ̂ = argmax
θ

L(θ; x)



Trouver le maximum revient à calculer la dérivée de la fonction par
rapport à l’inconnue. En la solution θ̂, cette dérivée est égale à 0. Cela
nous donne ici une équation à une inconnue ou un système de k équations à
k inconnues λ̂.

Comme cette condition est valable pour un maximum ou un minimum, il faut
s’assurer qu’on est bien à un maximum en vérifiant le signe de la dérivée
seconde.



Le Maximum de vraisemblance pour k = 1 paramètre inconnu

1. On calcule
∂L

∂θ
(θ; x), la dérivée à l’ordre 1, qui doit s’annuler pour un

maximum :

∂L

∂θ
(θ̂; x) = 0

2. On calcule
∂2L

∂θ2 (θ; x), la dérivée du second ordre, pour étudier son signe :

si
∂2L

∂θ2 (θ; x) < 0, ∀θ, on est à un maximum global ;

si
∂2L

∂θ2 (θ̂; x) < 0 pour le ou les points candidats trouvés, on est à un
maximum local.



Le Maximum de vraisemblance pour k paramètres inconnus

1. On calcule le système des dérivées partielles premières (ou gradient) et
on cherche les θ qui vérifient :

g(θ̂; x) = 0 ⇔



∂L

∂θ1
(θ̂; x) = 0

...
∂L

∂θk
(θ̂; x) = 0

2. On calcule les dérivées partielles secondes (ou matrice Hessienne) :

H(θ; x) =


∂2L

∂θ2
1
(θ; x)

∂2L

∂θ1∂θ2
(θ; x) . . .

∂2L

∂θ1∂θk
(θ; x)

...
... . . .

...
∂2L

∂θk∂θ1
(θ; x)

∂2L

∂θk∂θ2
(θ; x) . . .

∂2L

∂θ2
k
(θ; x)


si les mineurs de H(θ; x) alternent de signes en commençant par le
négatif, on est à un maximum global ;

si les mineurs de H(θ̂; x) alternent de signes en commençant par le
négatif, on est à un maximum local ;



Remarques

Pour k paramètres inconnus, il faut k dérivées partielles premières.

Il ne faut pas confondre g(θ; x), qu’on a nommé gradient et qui dépend des
données, avec g(θ̂;X ), qui dépend des VA et qu’on nommera score.

Le score est aléatoire comme fonction des VA. Une propriété importante est :

E(g(θ;X )) = 0

De même pour la Hessienne déterministe H(θ; x) et la Hessienne
stochastique H(θ;X ).

La matrice Hessienne est carrée, de format k et symétrique.



Application : à la loi de Poisson de paramètre λ > 0.

On sait que ∀xi ∈ [0,+∞[, P(X = xi) =
λxi e−λ

xi !
. Prenons le ln(.) :

ln[P(X = xi)] = ln

(
λxi e−λ

xi !

)
= ln

(
λxi e−λ

)
− ln (xi !)

= ln (λxi ) + ln
(
e−λ

)
− ln (xi !)

= ln (λxi ) − λ ln(e) − ln (xi !)

= xi ln(λ) − λ− ln (xi !)

On peut alors déduire la log-vraisemblance de l’échantillon :

L(λ; x) =
n∑

i=1

ln[P(X = xi)]

=

n∑
i=1

(xi ln(λ) − λ− ln(xi !))

=

n∑
i=1

xi ln(λ) −
n∑

i=1

λ−

n∑
i=1

ln(xi !)

= ln(λ)
n∑

i=1

xi − nλ−

n∑
i=1

ln(xi !)



Calculons la dérivée première en partant de l’expression trouvée à la
question précédente :

L(λ; x) = ln(λ)
n∑

i=1

xi − nλ−

n∑
i=1

ln(xi !)

∂L

∂λ
(λ; x) =

∂
[
ln(λ)

∑n
i=1 xi − nλ−

∑n
i=1 ln(xi !)

]
∂λ

=
∂
[
ln(λ)

∑n
i=1 xi

]
∂λ

−
∂(nλ)
∂λ

−
∂
[∑n

i=1 ln(xi !)
]

∂λ︸ ︷︷ ︸
=0

=

(
n∑

i=1

xi

)
∂ [ln(λ)]

∂λ
− n

∂(λ)

∂λ

=
1
λ

n∑
i=1

xi − n



Calculons la dérivée première en la solution :

∂L

∂λ
(̂λ; x) = 0

⇔ 1
λ̂

n∑
i=1

xi − n = 0

⇔ n =
1
λ̂

n∑
i=1

xi

⇔ λ̂ =
1
n

n∑
i=1

xi ≡ x



Calculons la dérivée seconde comme la dérivée de la dérivée première :

∂2L

∂λ2 (λ; x) =
∂

[
∂L

∂λ
(λ; x)

]
∂λ

=

∂

(
1
λ

∑n
i=1 xi

)
∂λ

=

(
n∑

i=1

xi

)
∂
(

1
λ

)
∂λ

= −
1
λ2︸︷︷︸
>0

n∑
i=1

xi︸ ︷︷ ︸
>0

< 0

C’est donc un maximum global.



Remarque

On notera :

λ̂ = λ̂(x) = x : l’estimation = un nombre

λ̂‵ = λ̂(X ) = X : l’estimateur = une VA



Application à la loi de Bernoulli de paramètre p

On sait que xi = 0,1 P(X = xi) = pxi (1 − p)(1−xi ). On calcule son ln(.) :

ln[P(X = xi)] = ln
(
pxi (1 − p)(1−xi )

)
= ln (pxi ) + ln

(
(1 − p)(1−xi )

)
= xi ln(p) + (1 − xi) ln(1 − p)

On peut alors déduire :

L(p; x) =
n∑

i=1

ln[P(X = xi)]

=

n∑
i=1

(xi ln(p) + (1 − xi) ln(1 − p))

=

n∑
i=1

xi ln(p) +
n∑

i=1

(1 − xi) ln(1 − p)

= ln(p)
n∑

i=1

xi + ln(1 − p)
n∑

i=1

(1 − xi)



Calculons la dérivée première :

L(p; x) = ln(p)
n∑

i=1

xi + ln(1 − p)
n∑

i=1

(1 − xi)

∂L

∂p
(p; x) =

∂
[
ln(p)

∑n
i=1 xi + ln(1 − p)

∑n
i=1(1 − xi)

]
∂p

=
∂
[
ln(p)

∑n
i=1 xi

]
∂p

+
∂
[
ln(1 − p)

∑n
i=1(1 − xi)

]
∂p

=

[
n∑

i=1

xi

]
× ∂ [ln(p)]

∂p
+

[
n∑

i=1

(1 − xi)

]
× ∂ [ln(1 − p)]

∂p

=
1
p

n∑
i=1

xi −
1

1 − p

n∑
i=1

(1 − xi)



Posons la dérivée première en la solution :

∂L

∂p
(p̂; x) = 0

⇔ 1
p̂

n∑
i=1

xi −
1

1 − p̂

n∑
i=1

(1 − xi) = 0

⇔ 1
p̂

n∑
i=1

xi =
1

1 − p̂

n∑
i=1

(1 − xi)

⇔ 1 − p̂
p̂

=

∑n
i=1(1 − xi)∑n

i=1 xi

⇔ 1
p̂
− 1 =

n −
∑n

i=1(xi)∑n
i=1 xi

⇔ 1
p̂
− 1 =

n∑n
i=1 xi

− 1

⇔ 1
p̂
=

n∑n
i=1 xi

⇔ p̂ =

∑n
i=1 xi

n
≡ x̄



∂2L

∂p2 (p; x) =
∂

(
∂L

∂p
(p; x)

)
∂p

=

∂

[
1
p
∑n

i=1 xi −
1

1 − p
∑n

i=1(1 − xi)

]
∂p

=

∂

[
1
p
∑n

i=1 xi

]
∂p

−
∂
[

1
1−p

∑n
i=1(1 − xi)

]
∂p

=

(
n∑

i=1

xi

)
×

∂
(

1
p

)
∂p

−

(
n∑

i=1

(1 − xi)

)
×

∂
(

1
1−p

)
∂p

=

(
n∑

i=1

xi

)
× −1

p2 −

(
n∑

i=1

(1 − xi)

)
× 1

(1 − p)2

= −


∑n

i=1 xi

p2 +

∑n
i=1(1 − xi)

(1 − p)2︸ ︷︷ ︸
>0

 < 0

C’est donc un maximum global.



Remarque

On notera :

p̂ = p̂(x) = x : l’estimation = un nombre

/̂p = p̂(X ) = X : l’estimateur = une VA



Application à une VAC de paramètre θ

Soit (X1,X2, . . . ,Xn) une suite de n variables aléatoires continues
identiquement et indépendamment distribuées selon la densité de
probabilités

f (xi ; θ) =

 x
1
θ

−1
i

θc
1
θ

si xi ∈ [0, c]

0 sinon

avec c une constante connue.

On veut estimer le paramètre θ par maximum de vraisemblance :

θ̂ = argmax
θ

L(θ; x) =
n∑

i=1

ln[f (xi ; θ)].



Calculons ln[f (xi ; θ)] en utilisant les propriétés de ln(.) à savoir :

ln

(
A
B

)
= ln(A) − ln(B)

ln(AB) = ln(A) + ln(B)

ln(Aα) = α ln(A)

ln f (xi ; θ) = ln

x
1
θ−1

i

θc
1
θ


= ln

(
x

1
θ−1

i

)
− ln

(
θc

1
θ

)
=

(
1
θ
− 1
)
ln(xi) − ln(θ) − ln(c

1
θ ) attention à la priorité !

=

(
1
θ
− 1
)
ln(xi) − ln(θ) −

1
θ
ln(c).



En utilisant les propriétés des sommes, on en déduit l’expression du critère à
maximiser L(θ) :

L(θ; x) =
n∑

i=1

ln f (xi ; θ)

=

n∑
i=1

[(
1
θ
− 1
)
ln(xi)− ln(θ)−

1
θ
ln(c)

]

=

(
1
θ
− 1
) n∑

i=1

ln(xi) −

n∑
i=1

ln(θ) −
n∑

i=1

1
θ
ln(c)

=

(
1
θ
− 1
) n∑

i=1

ln(xi) − n ln(θ) −
n
θ
ln(c).



Calculons la dérivée première :

∂L

∂θ
(θ; x) =

∂
[(

1
θ
− 1
)∑n

i=1 ln(xi) − n ln(θ) − n
θ
ln(c)

]
∂θ

=
∂
[

1
θ

∑n
i=1 ln(xi)

]
∂θ

−
∂
[∑n

i=1 ln(xi)
]

∂θ︸ ︷︷ ︸
=0

−
∂ [n ln(θ)]

∂θ
−

∂
[

n
θ
ln(c)

]
∂θ

=

(
n∑

i=1

ln(xi)

)
∂
[

1
θ

]
∂θ

− n
∂ [ln(θ)]

∂θ
− n ln(c)

∂
[

1
θ

]
∂θ

= −
1
θ2

n∑
i=1

ln(xi) −
n
θ
+

n ln(c)
θ2



On en déduit la CPO :

∂L

∂θ
(θ̂; x) = 0

⇔−
1
θ̂2

n∑
i=1

ln(xi) −
n
θ̂
+

n ln(c)
θ̂2

= 0

⇔−
1
θ̂2

n∑
i=1

ln(xi) −
nθ̂
θ̂2

+
n ln(c)
θ̂2

= 0

⇔−

n∑
i=1

ln(xi) − nθ̂+ n ln(c) = 0

⇔ nθ̂ = n ln(c) −
n∑

i=1

ln(xi)

⇔ θ̂ = ln(c) −
1
n

n∑
i=1

ln(xi)



Repartons de :

∂L

∂θ
(θ; x) = −

1
θ2

n∑
i=1

ln(xi) −
n
θ
+

n ln(c)
θ2

et dérivons à nouveau par rapport à θ :

∂2L

∂θ2 (θ; x) =
∂
(
− 1

θ2

∑n
i=1 ln(xi) −

n
θ
+ n ln(c)

θ2

)
∂θ

=
∂
(
−θ−2 ∑n

i=1 ln(xi) − nθ−1 + n ln(c)θ−2
)

∂θ

= +2θ−3
n∑

i=1

ln(xi) + nθ−2 − 2n ln(c)θ−3

=
2
θ3

n∑
i=1

ln(xi) +
n
θ2 −

2n ln(c)
θ3

=
2
∑n

i=1 ln(xi) − 2n ln(c)
θ3 +

n
θ2

= 2n
1
n

∑n
i=1 ln(xi) − ln(c)

θ3 +
n
θ2



Le signe n’est pas clair. Evaluons l’expression en θ = θ̂ :

∂2L

∂θ2 (θ̂; x) = 2n

=−θ̂︷ ︸︸ ︷
1
n

n∑
i=1

ln(xi) − ln(c)

θ̂3
+

n
θ̂2

= −2n
θ̂

θ̂3
+

n
θ̂2

= −
2n
θ̂2

+
n
θ̂2

= −
n
θ̂2

< 0.

La dérivée seconde en le point candidat étant forcément négative
(n > 0, θ̂2 > 0), on est donc bien à un maximum local.



Application à la loi normale N(m,σ2)

Soit une suite de n variables aléatoires (X1,X2, . . . ,Xn) iid selon une loi
normale N(m,σ2) de densité de probabilité

ϕm,σ2(x) =
1√

2πσ2
e−

(x−m)2

2σ2

On veut estimer les paramètres m et σ2 en résolvant le programme du
maximum de vraisemblance :

m̂, σ̂2 = argmax
m,σ2

L(m,σ2; x) =
n∑

i=1

lnϕm,σ2(xi)



max
m,σ2

L(m,σ2; x) =
n∑

i=1

lnϕm,σ2(xi)

Calculons d’abord le log de la fonction :

lnϕm,σ2(xi) = ln

[
1√

2πσ2
e−

(xi−m)2

2σ2

]
= ln

[
1√

2πσ2

]
+ ln

[
e−

(xi−m)2

2σ2

]
= − ln

[(
2πσ2) 1

2

]
−

(xi − m)2

2σ2

= −
1
2
ln
(
2πσ2)− (xi − m)2

2σ2

= −
1
2
ln (2π) −

1
2
ln
(
σ2)− (xi − m)2

2σ2



Mettons le résultat dans la somme pour obtenir la fonction à maximiser (et
donc à dériver) :

L(m,σ2; x) =
n∑

i=1

lnϕm,σ2(xi)

=

n∑
i=1

[
−

1
2
ln (2π) −

1
2
ln
(
σ2)− (xi − m)2

2σ2

]

=

n∑
i=1

−
1
2
ln (2π) −

n∑
i=1

1
2
ln
(
σ2) −

n∑
i=1

(xi − m)2

2σ2

= −
n
2
ln (2π) −

n
2
ln
(
σ2) −

1
2σ2

n∑
i=1

(xi − m)2



m̂, σ̂2 = argmax
m,σ2

L(m,σ2; x)


∂L

∂m
(m̂, σ̂2; x) = 0

∂L

∂(σ2)
(m̂, σ̂2; x) = 0



∂L

∂m
(m,σ2; x) =

∂
[
− n

2 ln (2π) − n
2 ln

(
σ2
)
− 1

2σ2

∑n
i=1(xi − m)2

]
∂m

=
∂
[
− n

2 ln (2π)
]

∂m︸ ︷︷ ︸
=0

−
∂
[

n
2 ln

(
σ2
)]

∂m︸ ︷︷ ︸
=0

−
∂
[

1
2σ2

∑n
i=1(xi − m)2

]
∂m

= −
1

2σ2

∂
[∑n

i=1(xi − m)2
]

∂m

= −
1

2σ2

n∑
i=1

∂
[
(xi − m)2

]
∂m

= −
1

2σ2

n∑
i=1

2(−1)(xi − m)

=
1
σ2

n∑
i=1

(xi − m)



∂L

∂(σ2)
(m,σ2; x) =

∂
[
− n

2 ln (2π) − n
2 ln

(
σ2
)
− 1

2σ2

∑n
i=1(xi − m)2

]
∂(σ2)

=
∂
[
− n

2 ln (2π)
]

∂(σ2)︸ ︷︷ ︸
=0

−
∂
[

n
2 ln

(
σ2
)]

∂(σ2)
−

∂
[

1
2σ2

∑n
i=1(xi − m)2

]
∂(σ2)

= −
n
2
∂
[
ln
(
σ2
)]

∂(σ2)
−

[
1
2

n∑
i=1

(xi − m)2

]
∂
[

1
σ2

]
∂(σ2)

= −
n
2

1
σ2 −

[
1
2

n∑
i=1

(xi − m)2

](
−

1
σ4

)

= −
n

2σ2 +
1

2σ4

n∑
i=1

(xi − m)2



{
∂L
∂m (m̂, σ̂2; x) = 0
∂L

∂(σ2)
(m̂, σ̂2; x) = 0

⇔

{
1
σ̂2

∑n
i=1(xi − m̂) = 0

− n
2

1
σ̂2 + 1

2σ̂4

∑n
i=1(xi − m̂)2 = 0

⇔

{∑n
i=1(xi − m̂) = 0

1
2σ̂2

[
−n + 1

σ̂2

∑n
i=1(xi − m̂)2

]
= 0

⇔

{∑n
i=1(xi − m̂) = 0

− n + 1
σ̂2

∑n
i=1(xi − m̂)2 = 0

La première équation peut se résoudre seule !



n∑
i=1

(xi − m̂) = 0

⇔
n∑

i=1

xi −

n∑
i=1

m̂ = 0

⇔
n∑

i=1

xi − nm̂ = 0

⇔
n∑

i=1

xi = nm̂

⇔ m̂ =
1
n

n∑
i=1

xi ≡ x̄



∂L

∂(σ2)
(m̂, σ̂2; x) = 0 ⇔ − n +

1
σ̂2

n∑
i=1

(xi − m̂)2 = 0

⇔ − n +
1
σ̂2

n∑
i=1

(xi − x̄)2 = 0

⇔ 1
σ̂2

n∑
i=1

(xi − x̄)2 = n

⇔ σ̂2 =
1
n

n∑
i=1

(xi − x̄)2 ≡ V (x)



H(m,σ2; x) =


∂L2

∂m2 (m,σ2; x)
∂L2

∂m∂(σ2)
(m,σ2; x)

∂L2

∂(σ2)∂m
(m,σ2; x)

∂L2

∂(σ2)2 (m,σ2; x)



∂L2

∂m2 (m,σ2; x) =
∂
(
∂L
∂m (m,σ2; x)

)
∂m

=
∂
(

1
σ2

∑n
i=1(xi − m)

)
∂m

=
1
σ2

∂
(∑n

i=1(xi − m)
)

∂m

=
1
σ2

n∑
i=1

∂ (xi − m)

∂m

=
1
σ2

n∑
i=1

−1

= −
n
σ2

∂L2

∂m2 (m̂, σ̂2; x) = −
n
σ̂2



H(m,σ2; x) =

(
∂L2

∂m2 (m,σ2; x) ∂L2

∂m∂(σ2)
(m,σ2; x)

∂L2

∂(σ2)∂m (m,σ2; x) ∂L2

∂(σ2)2 (m,σ2; x)

)

∂L2

∂m∂(σ2)
(m,σ2; x) =

∂
(
∂L
∂m (m,σ2; x)

)
∂(σ2)

=
∂
(

1
σ2

∑n
i=1(xi − m)

)
∂(σ2)

=

[
n∑

i=1

(xi − m)

]
∂
(

1
σ2

)
∂(σ2)

=

[
n∑

i=1

(xi − m)

](
−

1
(σ2)2

)

∂L2(m,σ2)

∂m∂(σ2)
(m̂, σ̂2; x) =


n∑

i=1

(xi − x̄)︸ ︷︷ ︸
=0


(
−

1
σ̂4

)

= 0



H(m,σ2; x) =

(
∂L2

∂m2 (m,σ2) ∂L2

∂m∂(σ2)
(m,σ2)

∂L2

∂(σ2)∂m (m,σ2) ∂L2

∂(σ2)2(m,σ2)

)

∂L2

∂(σ2)∂m
(m,σ2) =

∂L2

∂m∂(σ2)
(m,σ2)



H(m,σ2; x) =

(
∂L2

∂m2 (m,σ2) ∂L2

∂m∂(σ2)
(m,σ2)

∂L2

∂(σ2)∂m (m,σ2) ∂L2

∂(σ2)2 (m,σ2)

)

∂L2

∂(σ2)2 (m,σ2) =
∂
(

∂L
∂(σ2)

(m,σ2)
)

∂(σ2)
=

∂
(
− n

2
1
σ2 + 1

2σ4

∑n
i=1(xi − m)2

)
∂(σ2)

=
∂
(
− n

2
1
σ2

)
∂(σ2)

+
∂
(

1
2σ4

∑n
i=1(xi − m)2

)
∂(σ2)

= −
n
2
∂
(

1
σ2

)
∂(σ2)

+
1
2

[
n∑

i=1

(xi − m)2

]
∂
(

1
(σ2)2

)
∂(σ2)

= −
n
2

(
−

1
σ4

)
+

1
2

[
n∑

i=1

(xi − m)2

](
−2
(σ2)3

)

∂L2

∂(σ2)2 (m̂, σ̂2; x) =
n

2σ̂4 −
1
σ̂6

n∑
i=1

(xi − x̄)2 =
n

2σ̂4 −
nσ̂2

σ̂6

=
n

2σ̂4 −
2n
2σ̂4 = −

n
2σ̂4



H(m̂, σ̂2; x) =

−
n
σ̂2 0

0 −
n

2σ̂4



det(H(m̂, σ̂2; x)1) = −
n
σ̂2 < 0

det(H(m̂, σ̂2; x)2) = −
n
σ̂2 ×−

n
2σ̂4 =

n2

2σ̂6 > 0

Alternance de signes des mineurs en commençant par le négatif.

Donc la matrice est définie négative.

Donc on est bien à un maximum local...



II- Propriétés d’un estimateur



La loi normale

Y ↪→N(µ,σ2)

X =
Y − µ

σ
↪→ N(0,1)

Y = µ+ σ X

Soit n lois normales indépendantes Xi ⇝ N(µi ,σ
2
i ) :

n∑
i=1

Xi ⇝ N

(
n∑

i=1

µi ,
n∑

i=1

σ2
i

)



Définition d’une loi du Chi2

∀i ∈ [1, . . . ,n], Xi ↪→
iid

N(0,1)

Z =

n∑
i=1

X 2
i ↪→ χ2(n)

Propriétés intéressantes :
E
(
χ2(n)

)
= n

V
(
χ2(n)

)
= 2n



Les convergences : convergence en proba

On dit que la suite de VA Xi converge en probabilité vers une VA X si ∀ϵ > 0 :

P (|Xn − X | < ϵ) −→
n→+∞ 1

ou encore
P (|Xn − X | > ϵ) −→

n→+∞ 0

On écrit alors
Xn

p−→ X

Pour le montrer, il suffit d’utiliser la condition suffisante suivante :

E(Xn) −→
n→+∞ a

V(Xn) −→
n→+∞ 0

⇒ Xn
p−→ a



Les convergences : convergence en loi

On dit que la suite de VA Xi de fonction de répartition Fi converge en loi vers
une VA X de fonction de répartition F si la suite Fi(x) converge vers F (x) en
tout point où F est continue. On écrit alors

Xn
L−→ X

Pour le montrer, il suffit d’utiliser la convergence en probabilités :

Xn
p−→ X ⇒ Xn

L−→ X



Les convergences : convergence en loi

Soit une suite de n VAC iid (X1,X2, . . . ,Xn), chacune d’espérance m et de
variance σ2.

Soit X =
1
n
∑n

i=1 Xi .

La loi faible des grands nombres :

E(X ) = E(X ) = m
V(X ) = σ2

n −→
n→+∞ 0 ⇒ X p−→ E(X ) = m

En dilatant l’estimateur pour obtenir une VA avec une variance finie :

E
(√

n X
)
=

√
n E(X ) =

√
n m

V
(√

n X
)
= n V(X ) = σ2

Le théorème central-limite :
√

n X − E(
√

n X )√
V(

√
n X )

=

√
n(X − m)

σ

L
⇝ N(0,1)



Les convergences : convergence en loi

En utilisant les propriétés de la loi normale, on peut approximer les lois :

√
n X − E(

√
n X )√

V(
√

n X )
=

√
n(X − m)

σ

L
⇝ N(0,1)

⇔ X − m
σ√
n

L
⇝ N(0,1)

⇔ X L
⇝ N(m,

σ2

n
)



Les convergences : applications

Soit la loi Binomiale Z ⇝ B(n,p). Elle peut s’écrire comme la somme de n
lois de Bernoulli iid Xi ⇝ B(p).

Z =

n∑
i=1

Xi = nXn

E(Xi) = p V(Xi) = p(1 − p)
E(Z ) = np V(Z ) = np(1 − p)
E(Xn) = p V(Xn) =

p(1−p)
n

On a donc : Xn
p−→ p puisque V(Xn) −→

n→+∞ 0.

Le théorème central-limite :
√

n Xn−p√
p(1−p)

L−→ N(0,1). Il vient :

√
n

Z/n − p√
p(1 − p)

= n
Z/n − p√
np(1 − p)

=
Z − np√
np(1 − p)

L−→ N(0,1)

On peut donc approximer une loi Z ⇝ B(n,p) par une loi normale
N(np,np(1 − p)) (généralement si n ⩾ 30,np ⩾ 5,n(1 − p) ⩾ 5.)



Les convergences : applications

Soit la loi Poisson Z ⇝ P(λ). Elle peut s’écrire comme la somme de λ lois de
Poisson iid Xi ⇝ P(1).

Z =

λ∑
i=1

Xi = λXλ

E(Xi) = 1 V(Xi) = 1
E(Z ) = λ V(Z ) = λ

E(Xn) = 1 V(Xn) =
1
λ

On a donc : Xλ
p−→ 1 puisque V(Xn) −→

λ→+∞ 0.

Le théorème central-limite :
√
λ Xλ−1

1
L−→ N(0,1). Il vient :

√
λ

Z/λ− 1
1

= λ
Z/λ− 1√

λ
=

Z − λ√
λ

L−→ N(0,1)

On peut donc approximer une loi Z ⇝ P(λ) par une loi normale N(λ, λ)
(généralement si λ assez grand).



Propriétés théoriques d’un estimateur

- λ̂‵ est un estimateur de λ

- C’est une variable aléatoire.

- Il doit posséder des propriétés théoriques intéressantes



Propriétés théoriques d’un estimateur

1. Sans biais (= propriété théorique de l’espérance de la VA) :

E(λ̂‵) = λ (le paramètre inconnu)

2. Précision (= propriété théorique de la variance de la VA) :

V(λ̂‵) =
σ2

n

3. Convergent en proba (= propriété théorique de la distribution de la VA) :

V(λ̂‵) −→
n−→+∞ 0 ⇒ λ̂‵

p−→ λ ⇒
√

n(λ̂‵− λ)
L
⇝ N(0,σ2)

Remarque : ces propriétés concernent tous les estimateurs, quelque que soit
la loi sous-jacente.



Propriétés théoriques d’un estimateur

4. Efficace si sa variance = la borne CRFD :

V(λ̂‵) =
1

I(λ;X )

avec

I(λ;X ) = E
(
−
∂2L

∂λ2 (λ;X )

)
= V

(
∂L

∂λ
(λ;X )

)
= E

(
∂L

∂λ
(λ;X )

)2

On appelle I(λ;X ) l’information de Fisher et
1

I(λ;X )
la borne de

Cramer-Rao-Frechet-Darmois.

Pour cette propriété, il est nécessaire de faire l’hypothèse d’une loi
sous-jacente pour l’échantillon pour écrire la vraisemblance et en déduire
l’information de Fisher et la borne CRFD.



Exemple

La densité sous-jacente : fX (θ; xi) =
1
θ
exp

(
−

xi

θ

)
La log-vraisemblance de l’échantillon : L(θ; x) = −n ln(θ) −

1
θ

∑n
i=1 xi

Le gradient : g(θ; x) =
∂L

∂θ
(θ; x) = −

n
θ
+

1
θ2

∑n
i=1 xi

L’estimateur : θ̂(X ) = X , d’espérance θ et de variance
θ2

n

Le score : g(θ;X ) =
∂L

∂θ
(θ;X ) = −

n
θ
+

1
θ2

∑n
i=1 Xi avec E (g(θ;X )) = 0.

La Hessienne : H(θ;X ) =
∂2L

∂θ2 (θ;X ) =
n
θ2 +

2
θ3

∑n
i=1 Xi

L’information de Fisher : I(θ;X ) = E (−H(θ;X )) = V (g(θ;X )) =
n
θ2

Comme V(θ̂(X )) =
1

I(θ;X )
, θ̂(X ) est efficace.



Le cas de l’estimateur X

Soit une suite de n variables aléatoires iid (X1,X2, . . . ,Xn).

Supposons que leur espérance est m et leur variance σ2.

Cela signifie que ces n variables aléatoires sont toutes identiques entre
elles et ont toutes la même loi, la même espérance et la même variance
qu’une variable X par exemple. C’est comme si on avait répété
l’expérience aléatoire liée à X , N fois de façon indépendante.

On a vu que dans beaucoup de cas, quand on voulait estimer un paramètre
inconnu qui est l’espérance de la loi sous-jacente E (X ) = m, l’estimateur est
souvent la moyenne arithmétique des variables aléatoires sous-jacentes
X = 1

n

∑n
i=1 Xi .

X est une variable aléatoire comme combinaison linéaire de variables
aléatoires.

Il est facile de montrer que cet estimateur est sans biais et convergent en
probabilités.



Espérance de X

E
(
X
)
= E

(
1
n

n∑
i=1

Xi

)

=
1
n
E

(
n∑

i=1

Xi

)

=
1
n

n∑
i=1

E (Xi)

=
1
n

n∑
i=1

E (X ) (car VA identiques)

=
1
n

n E (X )

= E (X ) = m



Variance de X

V
(
X
)
= V

(
1
n

n∑
i=1

Xi

)

=
1
n2 V

(
n∑

i=1

Xi

)

=
1
n2

n∑
i=1

V (Xi) (car VA indépendantes)

=
1
n2

n∑
i=1

V (X ) (car VA identiques)

=
1
n2 n V (X )

=
V (X )

n
=

σ2

n



Convergence en proba de X

Que se passe-t-il lorsque n → ∞?

lim
n→+∞V

(
X
)
= lim

n→+∞
σ2

n
= 0

On en déduit donc que :

X p−→E (X ) = m



Convergence en proba de X

Plus la taille de l’échantillon augmente, plus la variance diminue jusqu’à
valoir 0.

Cela implique que la variable aléatoire X tend vers la valeur de son
espérance, sans aucun aléa possible.

Donc X est le meilleur estimateur de l’espérance de la variable aléatoire X ,
jusqu’à lui être égal si la taille de l’échantillon augmente indéfiniment.

Ces résultats dépendent-ils d’une loi de probabilités particulière?

Ce résultat est indépendant d’un choix de variable aléatoire particulier. Il ne
vaut ici que pour des VA iid.

C’est la loi faible des grands nombres, qu’on note : X p−→ E (X ). Si on veut
estimer l’espérance d’une VA X , il faut la répéter un très grand nombre
de fois de façon indépendante et calculer la moyenne des résultats.



Illustration de la convergence en proba de X avec la loi de Poisson et Julia



Convergence en loi de X

La convergence en loi résulte de la convergence en probabilités.

Comme on sait comment dégénère la loi, il suffit de la multiplier par
√

n pour
la VA X ait une variance qui ne tende plus vers 0 quand n tend vers +∞.

On en déduit donc que
√

n X suit approximativement une loi normale (donc
une loi non dégénérée car elle a une variance non nulle si n est assez grand).

C’est le théorème central-limite.
√

n X − E(
√

n X )√
V(

√
n X )

L
⇝ N(0,1)



Convergence en loi de X

Pour s’en convaincre :

E
(√

n X
)
=

√
n E(X ) =

√
n m

V
(√

n X
)
= N V(X ) = n V(X ) = σ2

On en déduit donc :
√

n X − E(
√

n X )√
V(

√
n X )

=

√
n(X − m)

σ

L
⇝ N(0,1)

⇔ X − m
σ√
n

L
⇝ N(0,1)

⇔
√

n(X − m)
L
⇝ N(0,σ2)

⇔ X L
⇝ N(m,

σ2

n
)

Résultat encore une fois indépendant d’un choix de variable aléatoire
particulier.



Et si la loi sous-jacente X est iid normale?

Si la suite de n variables aléatoires identiquement et indépendamment
distribuées (X1,X2, . . . ,Xn) est N(m,σ2), alors cela nous débloque un
résultat important.

En utilisant les propriétés de la loi normale, il vient que X = 1
n

∑n
i=1 Xi suit

une loi normale comme combinaison linéaire de lois normales.

On a caractérisé son espérance et sa variance :

E
(
X
)
= m V

(
X
)
=

σ2

n
On en déduit donc

X − E(X )√
V(X )

⇝N(0,1) ⇔ X⇝N(m,
σ2

n
)

Ce n’est plus une approximation !



Comment estimer la variance?

Définissons la variance théorique :

Ŝ2 =
1
n

n∑
i=1

(Xi − m)2

Cet outil est intéressant (on verra pourquoi plus tard) mais inutilisable
puisque m est inconnu. On ne peut donc pas calculer cette quantité.

Il faut donc définir un outil plus opérationnel.



Comment estimer la variance?

Définissons à présent la variance empirique :

Ŝ2
n =

1
n

n∑
i=1

(
Xi − X

)2

On veut calculer E(S2
n) pour voir s’il est sans biais.

E(Ŝ2
n) = E

[
1
n

n∑
i=1

(
Xi − X

)2

]

=
1
n

n∑
i=1

E
(
Xi − X

)2

Essayons de voir ce que vaut E
(
Xi − X

)2
.



Comment estimer la variance?

E
(
Xi − X

)2
= E

(
Xi − m + m − X

)2

= E
[
(Xi − m) − (X − m)

]2
= E

[
(Xi − m)2 + (X − m)2 − 2(Xi − m)(X − m)

]
= E(Xi − m)2︸ ︷︷ ︸

=V(Xi )

+E(X − m)2︸ ︷︷ ︸
=V(X)

−2E
[
(Xi − m)(X − m)

]



Comment estimer la variance?

E
(
Xi − X

)2
= V(Xi) + V(X ) − 2E

(Xi − m)

1
n

n∑
j=1

Xj − m


= V(Xi) + V(X ) − 2E

(Xi − m)
1
n

n∑
j=1

(Xj − m)


= V(Xi) + V(X ) −

2
n
E

 n∑
j=1

(Xi − m) (Xj − m)


= V(Xi) + V(X ) −

2
n
E

(Xi − m)2︸ ︷︷ ︸
si i=j

+

n∑
j=1,j ̸=i

(Xi − m)(Xj − m)


= V(Xi) + V(X ) −

2
n
E
[
(Xi − m)2]︸ ︷︷ ︸
=V(Xi )

−
2
n
E

 n∑
j=1,j ̸=i

(Xi − m)(Xj − m)



= V(Xi) + V(X ) −
2
n
V(Xi) −

2
n

=0︷ ︸︸ ︷
n∑

j=1,j ̸=i

E [(Xi − m)(Xj − m)]︸ ︷︷ ︸
=Cov(Xi ,Xj )=0



Comment estimer la variance?

E
(
Xi − X

)2
= V(Xi) + V(X ) −

2
n
V(Xi)

= σ2 +
σ2

n
−

2
n
σ2

= σ2 −
1
n
σ2

=

(
1 −

1
n

)
σ2

=

(
n − 1

n

)
σ2

D’où

E(Ŝ2
n) =

(
n − 1

n

)
σ2 ̸= σ2

La variance empirique Ŝ2
n est donc un estimateur biaisé à distance finie

de σ2. . .

. . . mais asymptotiquement sans biais :

E(Ŝ2
n) =

(
n − 1

n

)
σ2 →

n→∞ σ2



Un estimateur sans biais de la variance

Ce résultat décevant permet cependant de trouver un estimateur sans biais
pour la variance. Repartons de l’égalité trouvée et utilisons les propriétés de
l’espérance :

E(Ŝ2
n) =

(
n − 1

n

)
σ2

⇔
(

n
n − 1

)
E(Ŝ2

n) = σ2

⇔
(

n
n − 1

)
E

(
1
n

n∑
i=1

(
Xi − X

)2

)
= σ2

⇔ E

[(
n

n − 1

)
1
n

n∑
i=1

(
Xi − X

)2

]
= σ2

⇔ E

[
1

n − 1

n∑
i=1

(
Xi − X

)2

]
= σ2

⇔ E
(

Ŝ2
n−1

)
= σ2

La variance empirique corrigée Ŝ2
n−1 =

1
n − 1

∑n
i=1

(
Xi − X

)2
est donc un

estimateur sans biais de σ2.



Un estimateur sans biais de la variance

Ce résultat ne dépend pas de la loi suivie par les VA.

Si on réintroduit l’hypothèse que la suite de n variables aléatoires
identiquement et indépendamment distribuées (X1,X2, . . . ,Xn) est N(m,σ2),
cela nous permet d’obtenir les lois des estimateurs qu’on vient de voir.



Loi suivie par Ŝ2

Ŝ2 =
1
n

n∑
i=1

(Xi − m)2

Cela peut paraı̂tre un peu inutile puisqu’on ne peut pas l’utiliser dans la
pratique mais il nous servira plus tard comme résultat théorique. Posons :

n
σ2 Ŝ2 =

n
σ2

1
n

n∑
i=1

(Xi − m)2
=

n∑
i=1

 Xi − m
σ︸ ︷︷ ︸

⇝iidN(0,1)


2

⇝ χ2(n)

car on reconnaı̂t ici une somme de n lois normales centrées réduites
indépendantes au carré. C’est donc une loi χ2(n). Il vient :

E
( n
σ2 Ŝ2

)
= n ⇔ E

(
Ŝ2
)
= σ2

V
( n
σ2 Ŝ2

)
= 2n ⇔ V

(
Ŝ2
)
=

2σ4

n



Loi suivie par Ŝ2
n

Ŝ2
n =

1
n

n∑
i=1

(
Xi − X

)2

Posons :

n
σ2 Ŝ2

n =
n
σ2

1
n

n∑
i=1

(
Xi − X

)2
=

n∑
i=1

(
Xi − X

σ

)2

⇝ χ2(n − 1).

n − 1 car dans la suite des n VA (X1 − X ,X2 − X , . . . ,Xn − X ), on n’a
seulement n − 1 VA indépendantes pour pouvoir construire X à partir de
(X1,X2, . . . ,Xn).
On en déduit :

E
( n
σ2 Ŝ2

n

)
= n − 1 ⇔ E

(
Ŝ2

n

)
=

n − 1
n

σ2 ̸= σ2

V
( n
σ2 Ŝ2

n

)
= 2(n − 1) ⇔ V

(
Ŝ2

n

)
=

2(n − 1)
n2 σ4

Par bonheur, on retrouve bien le résultat d’estimateur baisé qu’on a démontré
précédemment.



Loi suivie par Ŝ2
n−1

Ŝ2
n−1 =

1
n − 1

n∑
i=1

(
Xi − X

)2

Posons :

(n − 1)
σ2 Ŝ2

n−1 =
n − 1
σ2

1
n − 1

n∑
i=1

(
Xi − X

)2
=

n∑
i=1

(
Xi − X

σ

)2

⇝ χ2(n − 1)

Il vient :

E
(
(n − 1)

σ2 Ŝ2
n−1

)
= n − 1 ⇔ E

(
Ŝ2

n−1

)
= σ2

V
(
(n − 1)

σ2 Ŝ2
n−1

)
= 2(n − 1) ⇔ V

(
Ŝ2

n−1

)
=

2σ4

n − 1

Par bonheur, on retrouve bien le résultat d’estimateur sans biais démontré
précédemment.
Avec la variance de l’estimateur, on peut facilement déduire sa convergence

en probabilités : V
(

Ŝ2
n−1

)
=

2σ4

n − 1
−→
N→∞ 0 ⇒ Ŝ2

n−1
p−→ σ2.



III- Intervalles de confiance



La loi de Student

X ↪→N(0,1)

Z ↪→χ2(n)

X et Z indépendantes
X√
Z
n

↪→ T (n)

Propriété intéressante :
T (n) −→

n−→∞ N(0,1)



La loi de Fisher-Snedecor

X1↪→χ2(v1)

X2↪→χ2(v2)

X1 et X2 indépendantes
X1

v1
X2

v2

↪→ F (v1, v2)



La table de Fisher-Snedecor



Que sait-on?

On sait construire un estimateur θ̂(X ) pour les paramètres de lois θ.

On connaı̂t leurs propriétés (sans biais, précision, convergences, efficacité).

On peut donc en déduire une estimation ponctuelle θ̂(x).

Ne pourrait-on pas fournir plutôt une fourchette ou un intervalle pour le
paramètre inconnu, incluant la précision de l’estimation?



Construction d’un intervalle de confiance

La démarche à suivre est toujours la même, en deux temps.

- trouver une fonction de l’estimateur et du paramètre inconnu dont on
connaı̂t la loi, classique de préférence.

- utiliser ce résultat et la table de la loi pour un niveau de confiance donné
pour construire l’intervalle de confiance.



La théorie

θ̂(X ) ↪→ N(θ,V(θ̂(X )))

θ̂(X ) est l’estimateur sans biais et efficace du paramètre inconnu θ.

V(θ̂(X )) est la variance théorique de l’estimateur.

Qu’il soit normalement distribué (ou asymptotiquement normal), les
propriétés de la loi normale nous donnent :

θ̂(X ) − θ√
V(θ̂(X ))

↪→ N(0,1)

Il est en théorie possible de construire un IC pour ce paramètre inconnu à
partir de ce résultat.



Définissons l’intervalle de confiance à partir de la probabilité (1 − α)
que les réalisations de cette loi normale centrée réduite appartiennent
à l’intervalle [−tα, tα] (inconnu pour le moment) :

P

−tα <
θ̂(X ) − θ√
V(θ̂(X ))

< tα

 = 1 − α

L’intervalle pour la loi de θ̂(X ) est ici symétrique puisque la loi normale est
symétrique autour de 0.

La valeur de tα dépend donc de la valeur choisie pour (1 − α), la surface de
l’intervalle.



Exemple : si on désire qu’il y ait 95% de chances que les réalisations de la loi
normale appartiennent à l’intervalle de confiance, on choisit dans la table de
la loi normale centrée réduite la valeur de tα associée à la surface à gauche
de 97,5%, soit tα = 1,95. Pour 90% de chances, on choisira tα = 1,64.



tα étant connu, il est possible de déduire l’intervalle de confiance du
paramètre inconnu θ :

⇒− tα <
θ̂(x) − θ√
V(θ̂(X ))

< tα

⇔ − tα
√

V(θ̂(X )) < θ̂(x) − θ < tα
√
V(θ̂(X ))

⇔ θ̂(x) − tα
√

V(θ̂(X )) < θ < θ̂(x) + tα
√

V(θ̂(X ))

On peut donc en déduire l’expression de l’intervalle de confiance :

θ ∈
[
θ̂(x) − tα

√
V(θ̂(X )); θ̂(x) + tα

√
V(θ̂(X ))

]
au niveau de confiance de (1 − α).



L’IC est symétrique autour de l’estimation ponctuelle θ̂(x).

La largeur de l’intervalle dépend :

- du niveau de confiance (1 − α) : plus (1 − α) est grand, plus tα sera
important et donc plus l’intervalle sera large ;

- de la précision de l’estimation ponctuelle mesurée par l’écart-type√
V(θ̂(X )) : plus l’estimation ponctuelle est imprécise, plus l’intervalle

sera large. Une façon de réduire cette imprécision est d’augmenter la
taille de l’échantillon puisque l’estimateur est convergent en probabilités
(augmenter N réduit la variance de l’estimateur).



Dans la pratique

On ne connaı̂t pas la valeur de V(θ̂(X )) car c’est la variance théorique.

L’approche précédente n’est donc pas applicable.

V(θ̂(X )) étant inconnu, on va l’estimer en utilisant un estimateur de ̂V(θ̂(X )).

D’où l’utilité d’avoir un estimateur de variance et de connaı̂tre ses lois ! ! ! !

Car la nouvelle variable aléatoire formée à présent par :

θ̂(X ) − θ√
̂V(θ̂(X ))

ne suit plus une loi normale centrée réduite !



En effet, on peut réécrire cette variable aléatoire comme :

θ̂(X ) − θ√
̂V(θ̂(X ))

=

θ̂(X)−θ√
V(θ̂(X))√
̂V(θ̂(X))

V(θ̂(X))

n−1
n−1

=

θ̂(X)−θ√
V(θ̂(X))√

(n−1)
̂V(θ̂(X))

V(θ̂(X))

n−1

=
N(0,1)√
χ2(n−1)

n−1

= T (n − 1)

On voit bien qu’il s’agit du rapport entre une loi normale centrée réduite et la
racine carrée d’une loi du chi2 rapportée à son nombre de degrés de liberté.

On est donc en présence d’une loi de Student à (n − 1) degrés de liberté si
ces deux lois sont indépendantes (à admettre).



P

−tα <
θ̂(X ) − θ√

̂V(θ̂(X ))

< tα

 = 1 − α

⇒− tα <
θ̂(x) − θ√

̂V(θ̂(X ))

< tα

⇔ − tα

√
̂V(θ̂(X )) < θ̂(x) − θ < tα

√
̂V(θ̂(X ))

⇔ θ̂(x) − tα

√
̂V(θ̂(X )) < θ < θ̂(x) + tα

√
̂V(θ̂(X ))

On peut donc en déduire l’intervalle de confiance :

θ ∈
[
θ̂(x) − tα

√
̂V(θ̂(X )); θ̂(x) + tα

√
V(̂̂θ(X ))

]
au niveau de confiance de (1 − α).



L’IC est symétrique autour de l’estimation ponctuelle θ̂(x) puisque la loi de
Student est symétrique.

La largeur de l’intervalle 2 tα

√
V(̂̂θ(x)) dépend :

- du niveau de confiance fixé (1 − α) : plus (1 − α) est grand, plus tα sera
important et donc plus l’intervalle sera large ;

- de la précision de l’estimation ponctuelle mesurée par la variance

estimée V̂(θ̂(x)) : plus l’estimation ponctuelle est imprécise, plus
l’intervalle sera large. Augmenter la taille de l’échantillon peut encore
une fois permettre de corriger ce point.

- La loi de Student traduit une incertitude plus grande que la loi Normale
car la variance de l’estimateur est estimée alors que dans le cas normal,
on faisait comme si elle était connue. Dès lors, les valeurs critiques de la
loi de Student sont plus grandes que celles de la loi Normale.



Exemple : si on désire qu’il y ait 95% de chances que les réalisations d’une
loi de Student à 25 degrés de liberté appartiennent à l’intervalle de
confiance, on choisit dans la table de la loi de Student la valeur de tα
associée à la surface à gauche de 97,5% ou de 2,5% à droite, soit tα = 2,06.



La table de Student



Rappels concernant l’estimation

Soit une suite de n variables aléatoires iid (X1,X2, . . . ,Xn), d’espérance m et
de variance σ2.

Un bon estimateur de m :

X =
1
n

n∑
i=1

Xi

On a montré qu’il avait toutes les propriétés + avec la normalité : l’efficacité et

la normalité : ⇔ X⇝N(m,
σ2

n
).

Un bon estimateur de σ2 :

Ŝ2
n−1 =

1
n − 1

n∑
i=1

(Xi − X )2

On connaı̂t sa loi et on sait qu’il est sans biais et convergent.

(n − 1)
σ2 Ŝ2

n−1 ⇝ χ2(n − 1)

E
(

Ŝ2
n−1

)
= σ2

V
(

Ŝ2
n−1

)
=

2σ4

n − 1



Intervalle de confiance pour m

Comme

X⇝N(m,
σ2

n
) ⇔ X − E(X )√

V(X )
=

X − m
σ√
n

↪→ N(0,1)

mais σ2 étant inconnu, cela ne sert à rien en pratique.

On va l’estimer avec
(n − 1)Ŝ2

n−1

σ2 ↪→ χ2(n − 1)

On peut donc poser :

X − m
Ŝn−1√

n

=

√
n(X − m)

Ŝn−1

=

√
n(X−m)

σ√
n−1
n−1

Ŝ2
n−1
σ2

=
N(0,1)√
χ2(n−1)

n−1

↪→ T (n − 1)

Après avoir trouvé la valeur de tα dans la table de Student à (n − 1) degrés
de liberté pour le niveau de confiance 1 − α, l’IC s’écrit :

m ∈
[
x − tα

ŝn−1√
n
; x + tα

ŝn−1√
n

]



Intervalle de confiance pour σ2

Utilisons le résultat :
(n − 1)Ŝ2

n−1

σ2 ↪→ χ2(n − 1)

Définissons l’IC comme la probabilité (1 − α) que les réalisations
appartiennent à [χ2

inf ;χ
2
sup] :

P

(
χ2

inf <
(n − 1)Ŝ2

n−1

σ2 < χ2
sup

)
= 1 − α

La loi du χ2 n’étant pas symétrique, il n’y a aucune relation entre les valeurs
formant l’intervalle de confiance. La surface à l’extérieur de l’intervalle est
égale à α, supposée répartie en deux surfaces égales α

2 .

χ2
inf dans la table du χ2 à (n − 1) degrés de liberté : surface à sa gauche

égale à α
2 ou surface à sa droite égale à 1 − α

2 .

χ2
sup dans la table du χ2 à (n − 1) degrés de liberté : surface à sa gauche

égale à 1 − α
2 ou surface à sa droite égale à α

2 .

Exemple : pour une loi du chi à 30 degrés de liberté, l’intervalle de confiance
à 90% est [18,49;43,77].



La table du chi2



On en déduit :

⇒ χ2
inf <

(n − 1)ŝ2
n−1

σ2 < χ2
sup

⇔ 1
χ2

sup
<

σ2

(n − 1)ŝ2
n−1

<
1
χ2

inf

⇔
(n − 1)ŝ2

n−1

χ2
sup

< σ2 <
(n − 1)ŝ2

n−1

χ2
inf

On peut donc en déduire l’intervalle de confiance :

σ2 ∈
[
(n − 1)ŝ2

n−1

χ2
sup

;
(n − 1)ŝ2

n−1

χ2
inf

]
au niveau de confiance (1 − α).

Ici, IC non symétrique autour de l’estimation ponctuelle du paramètre
inconnu. Comme précédemment, la largeur de l’intervalle dépend du niveau
de confiance choisi.



IV- Les tests



Rappels généraux sur la méthodologie des tests

Le ou les paramètres inconnus sont-ils statistiquement égaux ou non à telle
valeur supposée?

La théorie des tests le permet, en se ramenant uniquement au choix entre
deux hypothèses antagonistes, notées H0 et Ha (ou H1). L’hypothèse H0,
encore appelée hypothèse nulle, est privilégiée jusqu’au moment où elle est
infirmée par l’observation.

Ainsi, le test a pour but de mesurer l’adéquation d’une hypothèse à la réalité
observée à travers l’information apportée par l’échantillon.

On peut voir cela comme une distance entre l’hypothèse et l’observation

On retient plusieurs étapes dans la démarche des tests.



La formulation des hypothèses

Il est d’abord nécessaire de formuler les hypothèses à tester, et par voie de
conséquence, les erreurs de décision associées à ces hypothèses.

Supposons que l’on fasse un test sur le paramètre inconnu θ. On distinguera
différents types de tests sur un paramètre.



Dans le cas des tests unilatères, on teste l’égalité du paramètre inconnu θ à
la valeur θH0 supposée dans l’hypothèse nulle contre la stricte supériorité
(respectivement infériorité) à cette même valeur sous l’hypothèse alternative :

H0 : θ = θH0

Ha : θ > θH0 ou Ha : θ < θH0



Dans le cas des tests bilatères, on teste l’égalité du paramètre inconnu θ à
la valeur θH0 supposée dans l’hypothèse nulle contre la différence
(c’est-à-dire la stricte supériorité ou infériorité) à cette même valeur sous
l’hypothèse alternative :

H0 : θ = θH0

Ha : θ ̸= θH0



Risques d’erreur et leurs probabilités

Deux actions possibles et donc deux possibilités de se tromper.

H0 vraie H0 fausse
Accepter H0 - erreur 2de espèce
Rejeter H0 erreur 1ère espèce -

Deux types de risques d’erreur :

- le risque d’erreur de première espèce : risque de refuser l’hypothèse
nulle alors qu’elle est vraie. Sa probabilité est α = P(H0||H0).

- Le risque d’erreur de seconde espèce : risque d’accepter l’hypothèse
nulle alors qu’elle est fausse. Sa probabilité est β = P(H0||H0).

avec l’opérateur P(.||.) ayant pour premier argument une décision et pour
second un état de la nature (inobservable).

α = P(H0||H0) est donc la probabilité de décider de ne pas accepter H0 alors
que H0 est vraie.



Conditionnement par rapport à un état de la nature (H0 vraie ou non) que
l’on n’observe pas et non un événement. Ce n’est donc pas une probabilité
conditionnelle.

On accepte ou on rejette l’hypothèse nulle et rien d’autre ! L’hypothèse
alternative ne permet que de définir la zone de rejet.



La statistique de test et la règle de décision

Trouver une statistique, permettant de mesurer l’adéquation entre l’hypothèse
formulée et ce que disent les données pour répondre à la question posée.

- une fonction discriminante (ou pivotale)
- construite sous l’hypothèse nulle,

- une ”distance” entre l’hypothèse et les données,

- à comparer à une valeur théorique calculée à partir de la loi de
probabilités et définie à partir de la zone de rejet de l’hypothèse nulle
construite à partir de l’hypothèse alternative pour une probabilité de
risque de première espèce α donnée (Neymann-Pearson).

La règle de décision qui en découle permet ensuite de conclure.



Test bilatéral sur le paramètre inconnu θ

H0 : θ = θH0

Ha : θ ̸= θH0

soit encore H0 : θ− θH0 = 0.

Du point de vue de l’estimation, mesurée par la distance θ̂(x) − θH0 ≶ 0.

Idéalement la distance θ̂(x) − θH0 devrait être 0 si les données confirment H0.

Mais il faut tenir compte de l’incertitude donc pas forcément 0 mais assez
petit pour confirmer.

On va utiliser une statistique fondée sur θ̂(X ) − θH0 dont on connaı̂t la loi.

Sous H0, l’espérance de cette loi doit être 0 puisque E(θ̂(X )) = θ = θH0 .



Figure – Zone de rejet test bilatère pour α = 5%

Ici, la zone d’acceptation va se situer autour de 0 (sous H0, θ̂(X ) est centrée
sur θH0 ), jusqu’à deux valeurs situées de part et d’autre de 0 (du fait de Ha).

- si θ̂(x) − θH0 tombe dans cette zone, on peut statistiquement accepter
H0 : θ = θH0 .

- Sinon, au-delà de cette marge (d’un coté ou de l’autre), H0 n’est plus
statistiquement acceptable.



En appliquant la définition de la probabilité du risque de première espèce, et
en adaptant la règle de rejet de l’hypothèse nulle :

α = P(H0 | H0) = P

 θ̂(X ) − θ√
̂V(θ̂(X ))

/∈ [−tα; tα]︸ ︷︷ ︸
ZA

|| θ = θH0


En utilisant l’événement contraire :

1 − α = P

 θ̂(X ) − θ√
̂V(θ̂(X ))

∈ [−tα; tα] || θ = θH0



= P

−tα ⩽
θ̂(X ) − θH0√

̂V(θ̂(X ))︸ ︷︷ ︸
⇝T(n−1)

⩽ tα


Il ne reste alors plus qu’à trouver la valeur de tα associée à la probabilité
centrale (1 − α) dans la table de Student T (n − 1).



Une fois trouvée tα dans la table, on calcule
θ̂(x) − θH0√

̂V(θ̂(X ))

:

- si
θ̂(x) − θH0√

̂V(θ̂(X ))

∈ [−tα; tα], on est dans la zone d’acceptation du

test et on accepte H0 ;

- si
θ̂(x) − θH0√

̂V(θ̂(X ))

/∈ [−tα; tα], on est dans la zone de rejet du test et

on ne peut pas accepter H0.



On peut aussi réinterpréter les choses avec les intervalles de
confiance.

θ̂(x) − θH0√
V̂(θ̂(x))

∈ [−tα; tα] ⇔ θH0 ∈
[
θ̂(x) − tα

√
V̂(θ̂(x)); θ̂(x) + tα

√
V̂(θ̂(x))

]

on est dans la zone d’acceptation du test ou la valeur supposée θH0

est dans l’IC, on accepte H0.

θ̂(x) − θH0√
̂V(θ̂(X ))

/∈ [−tα; tα] ⇔ θH0 /∈
[
θ̂(x) − tα

√
̂V(θ̂(X )); θ̂(x) + tα

√
̂V(θ̂(X ))

]

on est dans la zone de rejet du test ou la valeur supposée θH0 n’est
pas dans l’IC, et on n’accepte pas H0.

Attention : ne fonctionne que pour les tests bilatéraux au risque α et
un IC au niveau de confiance 1 − α.



Test unilatéral sur θ

H0 : θ = θH0

Ha : θ > θH0

on utilisera comme fonction discriminante la loi suivie par l’estimateur de ce
paramètre en se plaçant sous l’hypothèse nulle. Ainsi :

θ̂(X ) − θ√
̂V(θ̂(X ))

↪→ T (n − 1)

et en se plaçant sous H0 vraie (c’est-à-dire θ = θH0 ) :

θ̂(X ) − θH0√
̂V(θ̂(X ))

↪→ T (n − 1)



L’hypothèse alternative permet de définir la zone critique, c’est à dire la
zone de rejet de l’hypothèse nulle connaissant la probabilité du risque
de première espèce α.

On raisonne de la manière suivante : du fait de l’incertitude due au modèle, à
l’échantillonnage,. . ., on ne pourra probablement pas observer exactement
l’égalité à la valeur θH0 même si c’est bien le cas. On va donc se laisser une
certaine marge pour accepter H0.



Posons que cette marge d’acceptation va jusqu’à une valeur critique tα,
inconnue mais supérieure à la fonction pivotale (du fait de l’hypothèse
alternative). L’action d’accepter ou de rejeter H0 va donc se traduire dans la
position observée de la statistique relativement à cette valeur critique :

- à l’intérieur de cette marge, on peut statistiquement accepter l’hypothèse
d’égalité du paramètre inconnu θ à la valeur θH0 supposée dans H0.

- Au delà de cette marge, H0 n’est plus statistiquement acceptable.

Figure – Zone de rejet test unilatère droit pour α = 5%



C’est ainsi que l’on va confronter notre hypothèse aux données.

La probabilité du risque de première espèce, à savoir rejeter l’hypothèse
nulle alors qu’elle est vraie, se traduit par la probabilité que la fonction
pivotale tombe au delà de la marge acceptable avec la probabilité α :

α = P(H0 | H0)

= P

 θ̂(X ) − θ√
̂V(θ̂(X ))

⩾ tα || θ = θH0


= P

 θ̂(X ) − θH0√
̂V(θ̂(X ))

⩾ tα


où tα est la valeur critique dans la table de Student pour la probabilité α au
delà de laquelle il n’est plus tenable de défendre l’hypothèse nulle et où on
doit donc la rejeter.



Une fois trouvée tα dans la table, on calcule
θ̂(x) − θH0√

̂V(θ̂(X ))

:

- si
θ̂(x) − θH0√

̂V(θ̂(X ))

< tα, on est dans la zone d’acceptation du test et

on accepte H0 ;

- si
θ̂(x) − θH0√

̂V(θ̂(X ))

> tα, on est dans la zone de rejet du test et on ne

peut pas accepter H0.



Prenons l’autre test unilatère sur le paramètre inconnu θ :

H0 : θ = θH0

Ha : θ < θH0



La zone d’acceptation va jusqu’à une valeur critique −tα inférieure à 0 (du fait
de l’hypothèse alternative). L’action d’accepter ou de rejeter l’hypothèse nulle
va donc se traduire dans la position observée de la fonction pivotale
relativement à cette valeur critique :

- à l’intérieur de cette marge, on peut statistiquement accepter l’hypothèse
d’égalité du paramètre inconnu θ à la valeur θH0 supposée dans H0.

- En deçà de cette marge, H0 n’est plus statistiquement acceptable.

Figure – Zone de rejet test unilatère gauche pour α = 5%



Comme précédemment, calculons la probabilité du risque de première
espèce :

α = P(H0 | H0)

= P

 θ̂(X ) − θ√
̂V(θ̂(X ))

⩽ −tα || θ = θH0


= P

 θ̂(X ) − θH0√
̂V(θ̂(X ))

⩽ −tα


où −tα est la valeur critique de la table de Student pour la probabilité α en
deçà de laquelle il n’est plus tenable de défendre l’hypothèse nulle et où on
doit donc la rejeter.

Attention, ici il faudra utiliser les propriétés de symétrie de la loi de Student
pour trouver la valeur de −tα qui sera ici négatif.



Une fois trouvée tα dans la table, on calcule
θ̂(x) − θH0√

̂V(θ̂(X ))

:

- si
θ̂(x) − θH0√

̂V(θ̂(X ))

> −tα, on est dans la zone d’acceptation du test et

on accepte H0 ;

- si
θ̂(x) − θH0√

̂V(θ̂(X ))

< −tα, on est dans la zone de rejet du test et on ne

peut pas accepter H0.
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