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Motivations



Motivations

- les données sont (collectées) partout
- idée : utiliser les données pour
o améliorer les connaissances

o répondre a des questions concretes
o l'aide a la décision

- utile dans tous les domaines

- Ce cours est une premiére approche de la question

- fait le lien entre stat descriptive et probabilités . ..

- ... pour I'appliquer a I'estimation

- montre a quoi ga sert => plein de nouvelles connaissances. ..

- ... qui seront complétées au second semestre avec I'économétrie.



La démarche statistique

On suppose une population : elle est trés large et on ne peut pas I'explorer
totalement = on travaille sur un échantillon

- La statistique descriptive pour décrire et comprendre un
phénomeéne
Résumer l'information pour en extraire I'essentiel
Applications dans tous les domaines
Constructions de tableaux, graphiques, indicateurs synthétiques

- La statistique mathématique pour I'aide a la décision
Modélisation et estimation (théorie/pratique)
Inférence statistique (tests) (théorie/pratique)
Déduction sur la population
Applications dans tous les domaines...

- Pour cela on a besoin de la théorie des probabilités

pour construire des échantillons
pour avoir des outils d’estimation et connaitre leurs propriétés



Exemple de questions

Vous jouez a pile ou face et vous comptez le nombre de pile. Vous disposez
d’un échantillon aléatoire de N tirages (Xj, Xz, ..., Xy) pour lesquels vous
observez la réalisation de pile (succés codé 1) (xq, X2, ..., Xn)-

- la loi de cette expérience est la loi de Bernoulli : donne la probabilité de
succes (p € [0, 1]) ou d’échec (1 — p) de I'expérience.

- On suppose que chaque tirage ou variable aléatoire de I'échantillon suit
la méme loi de Bernoulli de paramétre p € [0, 1] et quelles sont toutes
indépendantes.

- Loi de probabilités de Bernoulli de paramétre p € [0, 1] :
B(X; = k) = p(1 —p)' ¥

avec k = 0, 1 (resp. échec, succes).



Exemple de questions

Vous étes assureur et vous étes intéressés par le nombre des sinistres sur
une certaine période. Vous disposez d’'un échantillon aléatoire de N clients
(Xy, Xz, ..., Xn) pour lesquels vous observez le nombre de sinistres réalisés
(X1,X2, ey XN).

On suppose que la loi sous-jacente est la loi de Poisson (loi des
événements rares comme les accidents).

On suppose que chaque variable aléatoire de I'échantillon suit la méme
loi de Poisson et qu’elles sont toutes indépendantes.

On suppose donc ici que tout le monde a la méme probabilité de
sinistres...!??

Sa loi de probabilités :

avec x; € N.



Les données

Echantillon = 1 groupe d’observations tirées "au hasard” dans la

population

iid = identiguement et indépendamment distribués
une observation de I'échantillon x; est une réalisation particuliere d’'une

Variable Aléatoire (VA) X;

i

1

2

N

X

X1

X2

XN

Une VA mesure quantitativement le résultat d’'une expérience aléatoire
grace a sa loi de probabilités caractérisée par un ou plusieurs

parameétres.

Ces parameétres sont inconnus, on va donc chercher a les estimer avec

des outils fiables.



Plan du cours

Partie 0 : Rappels des pré-requis :
o sur l'utilisation des sommes

o sur les fonctions usuelles (puissance, exp, In)

o sur les dérivées

o sur les intégrales

o sur les probabilités

o sur les variables aléatoires

o sur leurs moments théoriques

Pré-requis :
0 connaitre ces notions de bases
0 savoir reconnaitre les lois de proba classiques
o savoir faire les calculs



Plan du cours

Partie 1 : Les couples de VA : pour étudier les relations entre deux VA.
o couples de VA discretes
o couples de VA continues

Partie 2 : Linférence statistique
o Construire des estimateurs
o Etudier leurs propriétés
o Calculer des intervalles de confiance
o Faire des tests



Partie 0 : Rappels



I- Rappels sur les sommes



Jouons avec les sommes et les statdes

Commencons par une définition.

N
X1 +Xo+ X3+ -+ Xn—1+Xnv = ZX,'

i=1

N

D X=X + X + X3 4.+ Xn1 + Xy

i—1 ~ =~ =~ —— =~
i=1 =2 =3 i=N—1 i=N



On peut "couper” une somme comme on veut :

N
D xi= Z’HZX'
i=1

i=11

—Zx,+Zx,

i=56

_Zx,+Zx,+Zx,

i=23 i=28

sibiensir N > >560uN > 28.



Une formule utile :

X

N
1 Xt +Xo+ X3+ + Xn1 + Xy
LI eV
N; I N

On reconnalt la moyenne arithmétique. De cette égalité on déduit :

N
Z X = NX
i=1

(peut étre utile parfois pour se "débarrasser” d’'une somme dans une
expression)



Une écriture plus compacte :

4
Z ax* = agx® + aix' + ax? + azx® + ayx*
k=0

_ 2 3 4
=dp + a1 X + aX" + azx” + asXx



Méme chose pour la multiplication :

n
Hk:1 X2x3x...x(n=1)xn
k=1
=n!
On reconnait ici la définition de "factoriel n” pour n > 1.

Notons que 0! = 1.

Remarque :

n=nx (n—1)xN—2)x(n—3) x---x2x1

=(n—1)!

=nx(n—1)!



Passons aux régles de calcul usuelles sur les sommes.

Ici on les démontre, ce qui nous fait manipuler les sommes, mais il
faudra connaitre ces formules pour pouvoir les utiliser directement
ensuite.



Régle de la constante multiplicative

La multiplication par une constante a qui ne dépend pas de l'indice de
sommation :

N N
VaeR, Zax, :aZx,
i=1 i=1

N
D axi=axi +axe+axs+ -+ axy 1+ axy
p

=axi+X+XxX3+- -+ Xn_1+ Xn)

on utilise I'écriture en somme

N
= aZ Xi
i=1



Régle de la constante additive

Laddition d’'une constante b qui ne dépend pas de l'indice de sommation :

N N
Vb eR, Z(b+x;) :bN+Zx,v
i—

i=1

N
D (b+x)=(b+x1)+ (b+ %)+ (b+X) + -+ (b+Xn_1) + (b+Xn)
i=1
=b+b+--+b+Xg+Xo+Xz+ o+ Xno1+ Xn
~——

N termes on utilise I'écriture en somme

N
= Nb+ ZX,‘
i—1



Méme question mais avec un terme en plus dans la somme (j = 0) : il faut
donc apprendre a compter les termes d’une somme !

N N
VbeR, )Y (b+x)=(N+1)b+) x
j=0 j=0

N
D (b+x)=(b+x) + (b+x1) + (b+ %) + -+ (b+ Xy1) + (b+ xv)
j=0
=b+b+ - +b+Xo+Xi+Xo+Xg+ -+ X1+ Xy
~——

N + 1 termes! on utilise I'écriture en somme
N
=(N+1)b+ E Xj

j=0



Régle de la distribution de la somme

M M M
D ity =) x+) v
[ = [

M
> ity =a+y)+0e+y)++ (xu+ym)
I=1

= +xXe+-+xm)+ Wty t+ym)

M M
= Z X+ Z i
1=1 I=1

Se généralise a plusieurs termes



Méme chose avec une soustraction

N

N N
D xi—y)=) xi—) Vi
i i

i=1

N
Y xi—y) =0 —y)+ e —y2)+ -+ (xn—yn)

i—1
=X1+Xet+t--+Xn—Y1—Yo— =N
=X t+Xet o Fxn) =ty )

N N
DRI
i=1 i=1



Manipulation de sommes

n—1

Z Ck Xk ynfk
n

k=1

n!
k!(n—k)!

avec
cl =

Cette formule ressemble au bindbme de Newton :

n
D Cixyni=(x+y)
k=0
avec deux termes en moins (k =0 et k = n)

Entrainez-vous a manipuler la formule en calculant (x + y)?, (x + y)3, ...



Partons de |a et faisons apparaitre les deux termes manquants :

n—1
ZCKX ynk Coxy"°+ chxynk +CnX ynn
—— ;\,_/

P k=1
le bindme le terme qui nous intéresse

k=n

n—1
:CO XO nO+ Ckxynk+Cany0
=1 = :1 =1
n—1
:yn_‘_zchkynfk_i_xn
k=1
Donc :
n—1
(X+y)"=y"+ ) Cpxfym X
k=1
n—1
Y Chxkyrk=(x+y)"—y"—x"
k=1
n—1
&) Cixiy" =(x+y)"—(y"+x"
k=1



Un peu de stat des

N N

> (xi—X) =) xi—NXx

i=1 i=1
=NXx—Nx=0

On est en train de sommer les termes d’une variable centrée, c’est-a-dire
dont les termes sont calculés en écart a leur moyenne arithmétique. La
somme des termes d’une variable centrée est 0.



Un peu de stat des

C’est N fois la covariance empirique : Cov(x, y) Z, 1( (X; — X).



Un peu de stat des

N

D (x—x)?

i=1
Soit on recommence tout le calcul, soit on adapte le précédent en posant :
y,_x, Doncx y,donc ,—y_x,—xet
SN =P xi—%) =Y (6 —X)(x—X) =L, (x—X)2. ll vient :

N

N
Z(X —x)? Zx,x, — NxXx
=1

i=1

I
M= 1
R

C’est N fois la variance empirique de la variable X.



Normalisation

N
PEEC
N
i=1 Z/=1 Xj
Pas de difficulté ici si on réalise que le terme Z/’V:1 X; est une constante.
, . 1 1
Lexpression est donc de la forme Z,'.L axjavec a= —y = =
1 1 X NXx
N N
Xi g Xi
— Nx Nx
=7

On a normalisé chaque x par la somme des x pour que la somme
étudiée soit ramenée a 1. A ne pas confondre avec la réduction d’une
variable ou il faut diviser par son écart-type pour que la variance de la
variable réduite soit égale alt.

ZI 1 y/ Xj — # ZI 1
Zi=1 Xi — X )2 Z/=1



Sommes infinies

Passons a présent aux sommes infinies de termes positifs ou nuls.

Ici, 'intuition est que quand on additionne une infinité de termes positifs, le
résultat devrait tendre vers l'infini.

Sauf si les derniers termes qu’on additionne se mettent a tendre vers 0 a un
moment dans la somme. Additionner des 0 ne change plus la somme.

Pour que le résultat de la somme tende vers une limite finie, il faut donc que
le terme générique converge vers 0 suffisamment rapidement (c’est-a-dire
avant que la somme ait divergé).

Il faut donc d’abord vérifier une condition nécessaire mais non suffisante qui
est que le terme générique tend vers 0 quand I'indice de sommation
tend vers l'infini (en fin de somme donc).
- Sic’est le cas, la somme va peut-étre converger vers une limite finie
mais ce n’est pas certain.

- Sice n'est pas le cas, on est s(r que la série diverge.



Petit conseil : révisez les résultats sur les sommes rencontrées I'année
derniere en cours : somme des termes d’'une suite arithmétique, des termes
au carré, d’'une suite géométrique, ... Cela sera souvent utile.



i 1
—1
n=1 2"
Vérifions la condition de convergence :
. AR
img=m (3) =0

puisque % < 1. La condition est remplie, on va peut-étre converger vers une
valeur finie.



On reconnait ici la somme des termes d’une suite géométrique de raison
1 <1 etdont le premier terme égale 1 (quand n = 1).

1— ()"
= lim 7(21) (on peut utiliser la formule générale)

N—oo 1 — 5
. N
= gim (5)



- 1
;n(n+1)

Vérifions la condition de convergence :

nh—mon(n-q- ) =0

La condition est remplie, on va peut-étre converger vers une valeur finie.



Lastuce consiste ici a utiliser le fait que :

BREHRCHES

=1
1
T
1 1 1 1
(r‘n)*(rm)]



Attention au piege dans I'utilisation des régles de calcul

i 1
2
— 5n+
Vérifions la condition de convergence :
. 1 ) 1 n+2
im g = m (5) =0

puisque % < 1. La condition est remplie, on va peut-étre converger vers une
valeur finie.



On reconnait ici la somme des termes d'une suite géométrique de raison }
dont le premier terme est (15)3 #1 (quand n =1, c’est le piége ).

Pour utiliser la formule habituelle, il faut que le premier terme de la somme
soit 1.

On va donc factoriser par (%)3



I
3

(maintenant on peut)



Non suffisance de la condition de convergence

o]
n=1

Vérifions la condition de convergence :

S=

Iim1:0

n—oo N

La condition nécessaire est remplie, cependant on va montrer que la limite
des termes a 0 n’est pas atteinte suffisamment rapidement pour que la
somme converge. Cela illustre bien son caractére non suffisant.



Raisonnons par I'absurde. Posons une hypothése de départ pour construire
un raisonnement : soit

n=1

et supposons que la somme converge vers une limite ¢ :

lim Sy =1

N—oo

C’est donc aussi le cas si on calcule Syy :

2N

lim Son = lim — =1
N—oo 2N N*)DOZ n

Dés lors, cela implique :
(Son— Sn) = N”jloSZN - A!meSN

={—(=0

lim
N—oo

Donc si on arrive a une conclusion différente, c’est que I'hypothése de départ
est fausse.



2N1 N1
SZN—SN:;B—ZE

“N+1 T N+2 TN
Comme

N+ti~ 2N
1
N+2~ 2N

N+1<2N <

N+2<2N <

SZN*SN>L+L+"'+L:ﬂ:1
2N 2N 2N 2N 2
Donc A}i_l‘:‘loo(SQN — Sy) # 0 puisque plus grand que 3. Donc I'hypothése de
départ A}IanN = { est fausse et donc la série diverge.



> 1
2 e
k=1
Vérifions la condition de convergence :

. 1
fim gz =0

La condition nécessaire est remplie, on va peut-étre converger.



D’abord, notons que Yk € N :

k> (k—1)
<k? > k(k—1)
1 1
1r 1 et A A <
@k2<k(k—1) Vk > 1 c’est-a-dire Yk > 2

n 1 n 1
= —- < 1
ékz kZ:Zk(k—U

On évite k = 1 et on commence en k = 2 pour ne pas diviser par 0.
Utilisons I'astuce de la cascade en constatant que :

1 1

1
kk—1) k—1 k



(T
n—1 n

Ony est presque.
A gauche, il manque le premier terme de la somme, quand k = 1. Dans ce

cas, le terme générique vaut 1. Additionner 1 de chaque coté de I'inégalité ne
change rien.

G 1
1+Zp<1+1—;
k=2

T 1
@Zﬁ<2—ﬁ
k=1



Il ne reste plus qu’a prendre la limite :

-1 . 1 1
e =tmY e <tm(27)

<2

La série a donc bien convergé méme si ici on n’a pas donné explicitement sa
limite.



Un petit dernier qui sera utile pour plus tard

N 2 N
(La) #1324
i=1 i=1
Ici la question est juste de vérifier gqu’il n’y a pas de confusion entre ZL a

2
et (Zf\; a,-) . En effet, le dernier contient le précédent du fait des termes
croisés ... !

(a+b)® =& + ab+ ba+ b?
=a +b*>+2ab



i=1 j#i

N
M=
L
\/’0
Il
™=
N

I
I\’]z

a,2+ZZZa,a, (onpassedej#iaj>i)
j>i

i=

1

N

-+ 2 a;a; (notation compacte)
i=1j>i

I
K

Appliquez pour N =3 . ...



[I- Rappels sur les fonctions usuelles



Régles de calcul sur les puissances

Rappelez les regles de calculs des fonctions usuelles

Bien qu’on ait déja bien étudié ces questions en premiére année, il y a
encore beaucoup d’approximations dans l'utilisation des fonctions
avec des puissances, causant des erreurs ou des simplifications de
résultats non abouties. Il est trés important de bien maitriser ces regles.



x2 xb
On se souvientque x2 =X X -+ X X.
| —
afois
Donc en revenant a cette définition si on a un doute :
XIxP = XX XX XXX XX
—— ——

a fois b fois

a+b fois

— Xa+b






Xaya
XBYI=XX-" XXX YX- XYy
~——
afois afois
=Xy X--- XXy
afois

= (xy)®



1
Xa
c’est la racine a-ieme de x. Préférez cette écriture plutot que celle avec la
racine.



1

Xa
Ici il est important de comprendre que % =x"4

Pour s’en convaincre, calculons :

Xa

grace au point 1. De I'égalité, il vient :

a — a

1
Xxx?=1ex%=
Xa



1
X—a
Grace au point précédent et aux regles de calcul des fractions :

1 1 x4
x-a L 1




Régles de calcul sur les fonctions usuelles

lim e =0.
X——00
e’ =1.
lim In(x) = —o0
x0T e' = e, la constante d’Euler.
In(1) =0

lim e¥ = +o0.
X—+00
e%b = &7 x &P (propriété 3).
e @ = L (propriété 6).
e* = & (propriétés 1 et 6).
e7%a = (e9)@ = (e7)9 (propriété 2).

e = y(x).

In(e™)) = u(x).



[ll- Rappels sur les dérivées



Régle de calculs sur les dérivées

Rappelez les définitions :

- de la dérivée d’'une fonction en un point. Comment peut-on l'interpréter ?
de la fonction dérivée. A quoi sert-elle ?

- de la fonction dérivée seconde. A quoi sert-elle ?

de la fonction dérivée partielle. A quoi sert-elle ?



Soient a, b et « des réels. Rappelez les définitions de la dérivée f'(x) de la
fonction f(x) selon qu’elle est définie comme :

-fx)=a=f(x)=0

-fx)=ax+b=1f(x)=a

- f(X) =x* = f'(x) = ax*!

) =Y Noax = Fx)=Y N, ixax

- f(x) = u(x) + v(x) = f'(x) = u'(x) + v'(X)

- f0) = u) = 1) = T g/ (x)

- f(x) =u(x) x v(x) = f'(x) =u'(x) x v(x) + u(x) x v'(x)
- f(x)= L;m = f'(x) = W(X)V(););(:)(X)V’(X)






IV- Rappels sur les intégrales



Définition

Qu’est-ce qu’une intégrale ?

b n—1
. b—a . b
J f(X)dX_nEToo;( - )><f<a+l><

’)
a

Comment peut-on l'interpréter ?

Qu’est-ce qu’une primitive ?

F(.) est une primitive de f(.) (2 une constante prés) ssi: F'(x) = f(x).

Il vient : [° f(x) dx = [F(x)]2 = F(b) — F(a).

a

Donc la constante d’intégration ne compte pas dans le calcul d’une intégrale.



Primitives usuelles

Soient a, ky et « des réels. Les primitives F(x) (a ko la constante d’intégration
prés) de la fonction F’(x) = f(x) selon qu’elle est définie comme :

flx)=0= F(x) =k

(x)

f(x) = x% = F(x) = Z5x"1 + ko

Fx) = U (0lu(x))™ = Flx) = gl + ko
fx) = 55 = F(x) = —is + ko

f(x) =1 = F(x) = In(x) + ko

f(x) = 4% = F(x) = In[u(x)] + ko

flx) == F(x)=€e"+ kg

f(x) = u'(x) x ") = F(x) = &™) + ko

f(x) =u'(x) + v'(x) = F(x) = u(x) + v(x) + ko



Régles de calcul sur les intégrales

- [2F(x) dx = im Z,”J(u)xf(a—i—/xu)

- [2(f(x) dx_jf dx+jag

- [Pexfx dx_cjaf

- [2f(x)dx = — [2 f(x)

f(x)dx+fb x)dx =0

fx)dx + [, f(x)dx =[5 f(x

f(x)dx =0

- gx) =f(x) = [,c,9(x)ax = [, f(x)dx

b
b
- J‘a
b
- J‘a
p
si f impair

- 2 f(x)d
[Eaflxax = {2]0 x)dx sif pair

- [Pf(x)ax = [F(x)12 = F(b) — F(a)
- [P fax = [F))°, = F(b)— lim F(a)

—

27 fx)adx = [F(x)1;™ = bgTooF(b) —F(a)

" Ja a

T f(x)dx = [F)I'2 = lim F(b)— lim F(a)

T bostoo a——o0

- J‘S:aj‘f:c f(x’y)dXdy: Ij:c‘rf:a f(X’y)dXdy

13
g



V- Rappels sur les probabilités



Notations

Soit E I'ensemble des réalisables :

U : union d’ensembles ou d’événements : signifie "ou”
N : intersection d’ensembles ou d’événements : signifie "et”

Tres liés aux notions d’événements incompatibles et indépendants



Probabilités d’une union d’événements incompatibles

Soient A et B deux événements incompatibles (AN B = @) :

P(ANB) =0
P(AU B) = P(A) + P(B)

n
Soient {A,—}‘ un ensemble de n événements incompatibles :

i=1
IP( U A,) - Z P(A)
i=1 i=1



Application directe : probabilité de I'événement contraire

Soient A et son événement contraire A dans E.

Par définition, ils sont incompatibles (AN A = @) et forment un systéme
complet d’événements (AUA = E) :



Généralisation si pas incompatibles

P(AU B) = P(A) + P(B)
—P(ANB)

P(AUBU C) = P(A) + P(B) + P(C)
—P(ANB)—P(ANC)—P(BNC)
+P(ANBN C)

]P’( LnJ A,-) - i]P’(A;)

i=1 i=

— > PANA)

i=1,i<j

n
+ ) PANANA)

i=1,i<j<k



Probabilités conditionnelles ou formule de Bayes

PAIB) = M};‘(B)B)
On a aussi
P(BA) P({D‘(;)B )

On en déduit la formule des probabilités composées :

P(AN B) = P(AB)P(B) = P(B|A)P(A)

et on peut réécrire :

P(AB) = 7P(BIL?;E;(A)
p(BA) - FABIE(B)

P(A)



Formule des probabilités totales

Supposons A; et A; un systeme complet d’événements (2 événements
incompatibles tq A; U A, = E). Soit B un événement.

B=BnE
=Bn (A1 UA)
=(BNA))U(BNA)

Comme incompatibles :

IP’(B):]P’{(BOAQU(BHAZ)

=P(BNA) +P(BnA)
=P(B|A)P(Ar) +P(BIA)P(Az)

en utilisant la formule des probabilités composées.



Généralisation

n
Supposons {A } un systéme complet d’événements (n événements
i

incompatibles tq |J;_, A; = E). Soit B un événement.

B=BnE
Bm(gAJ

(BN A)

Il
-

i=1
= (BNA)U(BNA)U
Comme incompatibles :

= [BmA1 (BNnA)U
P(BNAy) +P(BNAy) +
n

>_P(BNA)

1

?
P(BIA)P

U (BN A,)

U (BN A,)

-+ P(BNA))



Formule de probabilités des causes

Imaginons qu’on recherche a présent P(A/|B).

Avec Bayeson a:
P(BJA/)P(A))
P(B)
P(BIA)P(A)

P(A|B) =

T Y7 P(BAIP(A)

avec la formule des probabilités totales.



Intersection d’événements indépendants

P(An B) =P(A)P(B)

P((A) =] [P(A)
i=1 i=1

Il vient :
P(AIB) = P(f;\(r;]B) —P(A)
p(BA) = ANB) _pg

P(A)



VI- Rappels sur les variables aléatoires



Variables Aléatoires Discretes : VAD

Soit X suit une variable aléatoire discrete de loi de probabilités P(X = x)
pour x € X.

Comment sait-on qu’on est en présence d’une loi de probabilités ?

Une loi de probabilités est une formule qui prédit P(X = x), la probabilité des
résultats numériques discrets x € X C Z d’une expérience aléatoire codifiée.

Elle vérifie les conditions suivantes :
- ¥x e X, P(X=x)el0,1] car ce sont des probabilités.
- 2 xex P(X =x) =1 car X est 'ensemble des réalisables.

Dans la pratique, on vérifiera simplement la positivité des probabilités et leur
somme a 1.



La loi uniforme discrete

VkeX=0,....n, PX=kK=1

C’estici la loi uniforme discréte rencontrée a I'exercice 2. Les n résultats

possibles de I'expérience sont tous équiprobables (comme le résultat d’'un
lancer de dé pour n = 6).

On constate que Yk € X, P(X =k) =1 €0,1].

Ensuite, il faut montrer que } , . P(X =k) =1

n

Y PX=k=) —
k=1

keX

S| =

nx

S1—=

1
On est donc bien en présence d’une loi de probabilités.



La loi de Bernoulli

PX=x)=p*(1—p)"* avec x =0, 1.

C’est la loi de Bernoulli, une expérience aléatoire a 2 issues : succés/échec
(comme gagner/perdre, pile/face, ...) avec p la probabilité associée au
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"succes” et 1 — p celle de I""échec”.

Attention, ici la notion de succés n’est pas toujours positive (comme la
probabilité de faire faillite, étre malade, mourir, ...).

CommeP(X=1)=pe[0,1]ouP(X =0)=1—pe|[0,1], la premiere
condition est bien vérifiée.

Ensuite, il faut montrerque . P(X =x)=1:

1

D PX=x)=3 p*(1—p)"

xeX x=0
0

=p°(1—-p) +p'(1-p)
—_— Y
si x=0 si x=1
=(1—-p+p
=1
On est donc bien en présence d’une loi de probabilités.



La loi binomiale

Vkel0,...,n, P(X=k)=Ckpk(1—p)("®, avec Ck = k!(n"ik)!.

C’est la loi Binomiale. C’est une expérience qui consiste a déterminer la
probabilité de k succés dans la répétition de n expériences de Bernoulli
indépendantes. Ainsi, 'ensemble des possibles pour k est de 0 succés sur n
ou de n succes sur n.

Il est évident que P(X = k) est positif comme produit des termes positifs.

Ensuite, il faut montrer que ) , .. P(X = k) = 1. En utilisant le binéme de

Newton :
n

D PX=K=) Cipf(1-p

keX k=0
=p+(1-p)
=1
=1

On est donc bien en présence d’une loi de probabilités.



La loi géométrique

Vke[l,+ool, PX=kK) =(1—-pF"p.

C’est la loi géométrique. Elle sert a compter le temps d’attente du premier
succes dans la répétition d’'une loi de Bernoulli de fagon indépendante. On
peut avoir un succes des le premier tirage ou jamais (événement quasi
impossible).

De fagon évidente, Vk, P(X = k) € [0, 1] comme produit de termes positifs et
plus petits que 1.

Ensuite, il faut montrer que ) , .. P(X = k) = 1. En utilisant la somme des
termes d’une suite géométrique de raison (1 —p) :

+o00

Y P(X=Kk=) 1—-pf'p
keX k=1
=p ) (1-p*
k=1
1—(1—p)+= 1 p
= = == =1
Pa—t—p “Pi(i-p »p

On est donc bien en présence d'une loi de probabilités.



La loi de Poisson

Vk € [0, +ool et A > 0,P(X = k) = 2¢ (indication : ¥ = 5 /% *7).
C’est la loi de Poisson, ou loi des événements rares. Elle sert a dénombrer le
nombre d’accidents sur une période de temps. On peut donc en avoir de 0 a

une infinité (vraiment pas de chance).
Il est évident que P(X = k) est positif comme produit des termes positifs.

Ensuite, il faut montrer que }_, .. P(X = k) = 1. En utilisant le
développement limité de I'exponentielle :

X AkgA
Y P(X=k) ol
keX k=0
+00 4 k
A
A A
=6}
k=0
=e*xe

e MM =g’ =1

On est donc bien en présence d’une loi de probabilités.



Fonctions de densité/de répartition

Posons : F(x) =P(X < x) et F'(x) = f(x)

Pla<X<b)=PX<b) —PX<a)

F(.) est la fonction de répartition (ou cumulative density function)

f(.) est la fonction de densité telle que f(x) = F'(x).



Fonction de répartition et probabilités

Définir la fonction de répartition F(.) en termes de probabilités.

F(x) =P(X < x)



Fonction de densité et probabilités

La fonction de densité f(.) est la dérivée de la fonction de répartition.

f(x) = F'(x)

C’est la probabilité moyenne d’un intervalle infiniment petit autour de x :

f(x) = F'(x)

F(x+ h) — F(x)
m~ oA
h—0 h

P(X <x+h) —P(X < x)
m

h—0 h

. Plx<X<x+h)
=lm—

h—0 h

Pour les VAC, son role est équivalent a celui de la loi de probabilités pour les
VAD MAIS ce n’est pas une probabilité !



Densité de probabilités

Soit X suit une variable aléatoire continue de densité de probabilités f(x)
pour x € X, 'ensemble des réalisables ou support.

Comment sait-on que f(.) est une densité de probabilités ?

Une densité de probabilités vérifie les conditions suivantes :
- Vx € X, f(x) > 0. Donc la fonction de répartition est non-décroissante.

- C’est une fonction continue (sauf éventuellement en un nombre fini de
points).

- Jeex f(X) dx =1.



La loi uniforme continue

fx)
L ,,,,,,,,,,,,,,,,,,, .—.
b—a :
0 a b

Positive (car b > a)
Continue sauf en a et b.



La loi uniforme continue

.b—a
% b

B |:b_a:|a
b a
“b—a b-a

b—a

b—a
=1

On est donc bien en présence d’une densité de probabilités. MAIS ce n’est
pas une probabilité (poseza=0etb=0.5:f(x) =2.)



La loi exponentielle

Une loi exponentielle modélise la durée de vie d’un phénomene sans
mémoire, ou sans vieillissement, ou sans usure.

La probabilité que le phénomene dure au moins t + s heures (ou n'importe
quelle autre unité de temps) sachant qu'’il a déja duré t heures sera la méme
que la probabilité de durer s heures a partir de sa mise en fonction initiale.

En d’autres termes, le fait que le phénomene ait duré pendant t heures ne
change rien a son espérance de vie a partir du temps t.



La loi exponentielle

|

)\ef)\x
0

vx>0A>0
sinon

P atd
nonon

Positive (car I'exponentielle est toujours positive et A aussi)

Continue sauf en 0.




La loi exponentielle

+o00
J f(x) dx = J Ae M dx
xeX 0

- [y

— i A AXX\ _ (_ A—AX0
= Jim, (-e7) = (=)

=0—(-1)
=1
On est donc bien en présence d’une densité de probabilités.



La loi normale

X suit une loi normale (m, 0®) de densité :

1 _x=m)?
O(x) = —=e€ 22 ,VxeR

V2mo2

1o

08

0z

0.0




Fonctions de répartition discretes et continues

Caractérisez les fonctions de répartition F;(x) = P(X < x) et
Fo(x) = P(X < x).

Ici pour une loi de probabilité donnée, Vx € X, P(X = x), deux définitions de
la fonction de répartition sont possibles :

- Fi(x) =P(X < x) : cumul des probabilités pour les événements
inférieurs strictement a x. Ainsi, la probabilité de 'événement X < x
représente la probabilité de I'union des événements (incompatibles)
pour lesquels X prend les valeurs strictement inférieures a x (donc x est
exclu) dans I'ensemble des possibles de la loi :

Fi(x) =P(X <x) =) P(X=Kk)

k<x

- Fo(x) = P(X < x) : cumul des probabilités pour les événements
inférieurs ou égaux a x. Ainsi, la probabilité de 'événement X < x
représente la probabilité de 'union des événements (incompatibles)
pour lesquels X prend les valeurs inférieures ou égales a x (donc x est
inclus) dans I'ensemble des possibles de la loi :

Fa(x) =P(X < x) =) P(X=k)

k<x



Comme I'événement (X < x) = (X < x) U (X = x), 'union de deux
événements incompatibles, il vient que :

PX<x)=P[(X<x)U (X =x)]
=P(X < x)+P(X=x)
soit la relation entre les deux fonctions :
F(x) = F(x)+P(X =x)

Il faut également faire attention au choix de 'indice de sommation : ici on ne
peut plus utiliser x.



Les représenter graphiquement si X suit une loi de Bernoulli ou pour un
tirage de dé standard.



Fonction de répartition discréte :
P(X < x) Zk<x P(X =

avec P(X = k) = e etk € [1,6]

1/6

k)




La fonction de densité f(.) est la dérivée de la fonction de répartition F(.).

X——00

SF(x)— lim F(XJ:JX f(u)du

SF(x) — lim P(X < x) :J f(u)du
<F(x) :J f(u)du
C’est une fonction croissante (puisque sa dérivée est positive).

Elle prend des valeurs comprises entre 0(= lim F(x)) et1(= lim F(x))

X——00 X—+0o0

puisque c’est une probabilité.



Soit X une variable aléatoire continue définie sur x € X.

Caractérisez les fonctions de répartition F;(x) = P(X < x) et
Fo(x) =P(X < x).

Ici Fy(x) = F»(x) puisque P(X < x) = P(X < x) = [*_ f(u) du dans le cas
continu.

Donc, contrairement au cas discret, il est inutile de faire la distinction.



Fonctions de répartition de la loi uniforme : VAD/VAC

1 0 x<0O
Lois uniformes discréete P(X = k) = 5 et continue F(x) = ¢{x x € [0,1]
1 x>1

4,75

25

X
0,25 05 0,75 1

Y




Fonction de répartition de la loi uniforme continue

1
0 sinon

b—a
— u )
B |:b_a:|a
X a
b—a b-a
_x-—a
" b—a

Attention : la solution doit étre déterminée sur R pour étre compléte.

0 x<a
Xi

Fx)=P(X <x)= X € [a, b]

a
b—a
1 xX>b



Fonction de répartition de la loi uniforme continue

fix)

e
b-a

F(x)




Fonction de répartition de la loi exponentielle

Ae ™ ¥x>0A>0
0 sinon

—00

J AeMdu six>0
0

[ e

7?\u]
—(—e )
= fe*“ +1
Attention : la solution doit étre déterminée sur R pour étre compléte.

1—e™ x>0
0 sinon



Fonction de répartition de la loi exponentielle

Pl
wonn

>

—_——c
noin

B




Fonction de répartition de la loi Normale

1 _(x=m)?
X) = e 22 VxeR
b (x) el

Pas de solution explicite.



Fonction de répartition de la loi Normale




Calculer une probabilité avec la loi Normale

Il faut utiliser la table de la loi normale centrée réduite N(0, 1).

On utilise la relation : si Y ~» N(m, 02), si X ~ N(0, 1), alors :

Y:m+cx@xz¥

Cette table est particuliere car uniquement pour des valeurs de x > 0 car la
loi est symétrique.

Les probabilités pour les valeurs x < 0 se déduisent par le raisonnement
graphique utilisant la symétrie.



Calculer une probabilité avec la loi Normale

Table de Loi Normale

P(x<u)
il u
0.00 0,01 0,02 0.03 0.04 0.05 0,07 0.08 0.09
0.0 10,5000 0.5040 10,5080 05120 05160 05199 05279 05319 05359
0.1 05398 05438 0,547, 05517 05557 0,5596 0,5675 05714 05753
02 05793 0.5832 05871 05910 0.5948 0,5987 0,6064 06103 0,6141
0.3 06179 06217 0,6255 06293 06331 06368 0.6443 06480 06517
04 06554 0.6591 10,6628 06664 0.6700 06736 0,6808 06844 0,6879
0.5 06915 0.6950 0,6985 7019 0.7054 7088 0,7157 0.7190 0724
0.6 07257 071201 10,7324 07357 07389 10,7422 0,7486 07517 0,7549
0.7 0.7580 0.7611 7642 7673 0.7704 7734 0.7794 0.7823 0,7852
0.8 0,7881 0.,7910 10,7939 0.7967 0.79935 08023 0.8078 08106 08133
0.9 08159 08186 08212 08238 08254 0,8289 0.8340 08365 0,8389
1.0 10,8413 0.8438 10,8461 0.8485 08508 08531 08577 10,8599 08621
1.1 0.8643 0.8663 10,8686 0.8708 08729 08749 0.8790 08810 0.8830
12 08849 08869 10,8888 0.8907 0.8925 08944 0,8980 0.8997 09015
13 09032 05049 10,9066 09082 0,5009 09115 09147 09162 09177
14 09192 09207 091 09236 09251 09265 09292 09306 09319
1.5 09332 09345 10,9357 09370 09382 09394 09418 09429 09441
1.6 09452 09463 10,9474 09484 09495 0,9505 09525 09535 09543
1.7 09554 0.9564 09573 10,9582 09591 0,9599 0,916 0.9625 0,9633
1.8 09641 09649 09656 09664 09671 09678 10,9693 09699 09706
1.9 09713 09719 09726 09732 08738 0,97: 09736 6.9761 0,9767
20 09772 09778 10,9783 09788 09793 09798 0,9808 09812 09817
2.1 09821 09826 10,9830 09834 09838 09842 09850 09854 0,9857
22 0,9861 09864 10,9868 09871 09875 09878 09884 09887 0,9890
23 09893 09896 10,9898 09901 0.9904 0,9906 0.9911 09913 09916
24 09918 09920 10,9922 09925 09927 09929 09932 09934 09936
25 09938 09940 10,9941 09943 09945 0,9946 10,9949 09951 0,9952
26 09953 09953 09956 09957 0,9959 0,9960 0,9962 09963 0,994
27 09965 0.9966 10,9967 09968 0,9969 0,9970 09972 09973 09974
28 09974 099735 09976 09977 09977 0,9978 0,9979 09980 0,9981
2 10,9981 0.9982 09982 09983 0.9984 09934 09983 09986 09986
30 09987 09987 0,9987 09988 09988 0,9989 0,9989 0.9990 0,9990
3.1 09990 09991 10,9991 09991 09992 09992 09992 09993 0,993
32 09993 0,9993 10,9994 09904 0,9994 0,9994 10,9995 09995 0,993
33 09995 09995 0,9995 0,999 0.9996 0,9996 09996 0.9996 0,997
34 10,9997 09997 10,9997 09997 09997 0,9997 0.9997 0,9997 0.9997 0,998




Applications

1
F(x) = {ba v.x € la bl
0 sinon
0 x<a
Fx)=P(X<x)=14 52 xelahb
1 X>b

P(X<a=Fa=0
PX>b)=1-P(X<b)=1-F(b)=1-1=0

Pla<X<b)=P(X<b)—P(X<a)=F(b)—F(a)




Ae™™ ¥Yx>0,A>0
f(x) = .
0 sinon

1—e ™ x>0

FX)=P(X<x) = {0 sinon

1—e ™ sia>0
0 sinon

P(X<a)—{

1-(1—e™)=e™ sib>0

P(X>b)=1—P(X<b):1_F(b):{1_o—1 sinon



Tout dépend de la position de a et de b par rapport a 0.

Pla< X<b)=PX<b)—P(X<a)

= F(b)-F(a)
0-0 si a<0,b<0
=<{(1—e?)-0 sia<0,b>0
(1— e*"b) (1—e?) sia>0b>0
0 si a<0,b<0
={1—egM sia<0,b>0

eM_egM 5 a>0b>0



VIl- Rappels sur les principaux moments des variables
aléatoires



Principaux moments théoriques d’'une VAD

E(X) =) xP(X=x)
xeX

V(X) =) [x—EX)PP(X = x)
XeX

Ce sont des constantes non aléatoires.



De maniére générale, pour toute fonction ¢(.) :

Elo(X)] =Y o(x) P(X =x)

xeX

Ainsi par exemple :

E[X3] = Z X2 P(X = x)
xeX

EX =) x*P(X=x)
xeX

EX =) x*P(X=x)
xeX

E[(X —E(X))? =) [x—E(X)?P(X

xeX



Application :




Iciona:xeX={1,..., 5}etIP’(X=x)=‘§e[O,1].Dep|us:
> 4
Z]P(X:x):zg
xeX x=1
:1g><5:1



N(N +1)

si vous vous souvenez que Y | x = (la somme des termes d’'une

suite arithmétique de raison 1).



=) X—EX)PPX=x)

xeX

5
=> [x-3

x=1

1 5

= [x — 3

1 2 2
5[ +(2-32+(3-3)
"

-5

=2

+(4—3)?

+(5— 3)2]



Ici on reconnait la loi uniforme discréte : x e X ={1,..., nfetP(X = x) = ‘5

Tous les résultats possibles de I'expérience ont la méme probabilité.



Principales propriétés des moments théoriques des VAD

Soit X une variable aléatoire discrete de loi de probabilités P(X = x) définie
pour x € X. Soient a et b deux constantes réelles.

Montrez que I'espérance est un opérateur linéaire : E(aX + b) = aE(X) + b.



Principales propriétés des moments théoriques des VAD

Utilisons :
Elo(X)] = Y o(x) P(X =x)

xeX
en posant @ (X) = aX + b (du coup ¢(x) = ax + b).

E(aX +b) = ) (ax + b) P(X = x)

xeX

Y lax x P(X = X) + bP(X = x)]

xeX
=) axxP(X=x)+) bP(X=x)
xeX xeX
=a) xxP(X=x)+b) P(X=x)
xeX xeX
=E(X) =1

=aEX)+b



Principales propriétés des moments théoriques des VAD

Calculez I'espérance de X — E(X).

Utilisons E(aX + b) = aE(X) + ben posant a=1 et b= —E(X).
E[X —E(X)] =E(X)—-E(X)
=0

X —E(X) est la variable aléatoire X qu’on a centrée. Son espérance est donc
0.



Principales propriétés des moments théoriques des VAD

Montrez que la variance est un opérateur quadratique : V(aX + b) = a®V(X).

La variance de X s’écrit :

V(X) =) [x—EX)PP(X =x)

xeX
On adonc:
V(aX+b) =) lax+b—E(aX +b)? P(X = x)
xXeX
ou alors :

V(aX + b) = ElaX + b—E(aX + b))
=) lax+b—E(aX + b P(X = x)
xXeX

en posant ¢(X) = [aX + b—E(aX + b)]? (du coup
@(x) = lax + b—E(aX + b)]?).



Principales propriétés des moments théoriques des VAD

Concentrons-nous sur le carré. Comme E(aX + b) = aE(X) + b :

lax + b—E(aX + b)® = [ax + b— aE(X) — b)®
2

= [ax — aE(X)]
= la(x —E(X))P?
=& [x—EX)?

On remplace :

V(aX+b) =) lax+b—E(aX + b)* P(X = x)
XeX
=) @x—EX)P P(X=x)
XeX

=a ) x—EX)® PX=x)

xeX

=2 V(X)



Principales propriétés des moments théoriques des VAD

Calculez la variance de

V(X)
Utilisons V(aX + b) = @2V(X) en posant a = F etb=0.
X 1\
V( V(X)) - <¢W) o
~ V0

) est la variable X réduite, c’est-a-dire divisée par son écart-type. La

variance d’une variable réduite est donc égale a 1.



Principales propriétés des moments théoriques des VAD
Montrez qu’on peut écrire : V(X) = E(X?) — E?(X).
La variance s’écrit :

V(X) =) x—EX)?P(X =x)

xeX

Développons le carré et distribuons :

V(X) =) X—EX)?P(X=x)

= Xezx[xz — 2XE(X) + E2(X)] P(X = x)

= XEZXWP(X = x) — 2xE(X)P(X = x) + E3(X)P(X = x)]

_XEZX’(2 P(X =x)+ ) —2xE(X)P(X=x)+ ) EXX)P(X=

:Xezxxsz X) _xze]g X)) xP(X +15X:§x X) Y P(X=x)
xex xex Xex

=E(X2) =E(X) =1
= E(X?) — 2E%(X) + E2(X) = E(X?) — E?(X)



Principales propriétés des moments théoriques des VAD

Montrez qu’on peut également écrire : V(X) = E{[X(X — 1)]} + E(X) — E3(X).
Repartons du dernier résultat :

V(X) = E(X?) — E3(X)



Principales propriétés des moments théoriques des VAD
Le passage de E [X(X — 1) + X] = E[X(X — 1)] + E(X) n’est pas trivial mais
n’est pas difficile non plus en repassant par les sommes :

E[X(X—=1)+X| =) [x(x—1)+x]P(X=x)
~— ~———

xeX

@ (X) =@ (x)
=Y [x(x—=1)P(X = x) + xP(X = X)]
xeX
=Y X(x—=1PX=x)+) xP(X=x)
xeX xeX

=E[X(X—-1)]+E(X)



Principaux moments des VAC

Lespérance :
VAD: E(X) =) xP(X=x)
xeX
VAC : E(X) :J xf(x) dx
xeX
La variance :

VAD: V(X) =) [x—E(X)PP(X =x)

xeX

VAC : V(X) :J [x —E(X)]? f(x) dx
xeX

Ce sont des constantes non aléatoires.



De maniére générale, pour toute fonction ¢(.) :

Elp(X)] = J (%) f(x) dx

xeX

Ainsi par exemple :



Principales propriétés des moments théoriques des VAC

Soit X une variable aléatoire continue de densité de probabilités f(x) définie
pour x € X. Soient a et b deux constantes réelles.

La bonne nouvelle : ce sont les mémes que pour les VAD (car une intégrale
c’est une somme).



Principales propriétés des moments théoriques des VAC

Montrez que I'espérance est un opérateur linéaire : E(aX + b) = aE(X) + b.

Utilisons :
Elp(X)] = j o(x) f(x) dx

xeX

en posant @ (X) = aX + b (du coup ¢(x) = ax + b).



Principales propriétés des moments théoriques des VAC

E(aX + b) :J (ax + b) f(x) dx

J [ax f(x) dx + bf(x) dx]
J ax f(x) dx +J bf(x) dx
xeX

Lex ()dx+bJ f(x) dx

xeX

—E(X) =1

—aE(X)+b



Principales propriétés des moments théoriques des VAC

Calculez I'espérance de X — E(X).
Utilisons E(aX + b) = aE(X) + ben posant a=1 et b= —E(X).

EX — E(X)] =E(X) —E(X)
=0

X —E(X) est la variable aléatoire X qu’on a centrée. Son espérance est donc
0.



Principales propriétés des moments théoriques des VAC

Montrez que la variance est un opérateur quadratique : V(aX + b) = a®V(X).

La variance de X s’écrit :

On adonc:

V(aX + b) = J lax + b—E(aX + b)]? f(x) dx

xeX



Principales propriétés des moments théoriques des VAC

Comme E(aX +b) =aE(X)+b:

lax + b—E(aX + b)? = [ax + b— aE(X) — b]?

= [ax — aE(X)]?
= [a(x —E(X))?
=& [x —E(X)?

On remplace :
V(aX +b) = J [ax + b— E(aX + b)? f(x) dx
xeX

:J 2 [x —E(X)? f(x) dx
XeX

=& J x —E(X)? f(x) dx
xexX

=& V(X)



Principales propriétés des moments théoriques des VAC

Calculez la variance de X
V(X))

Utilisons V(aX + b) = &V (X) en posant a = \/F etb=0.

*(#ta) = (m) o0

= e VIX)

est la variable X réduite, c’est-a-dire divisée par son écart-type. La

X
Vv V(X)

variance d’une variable réduite est donc égale a 1.



Principales propriétés des moments théoriques des VAC

Montrez qu’on peut écrire : V(X) = E(X?) — E?(X).
La variance s’écrit :
V(X) =J [x —E(X)]2 f(x) dx
xeX
Développons le carré et distribuons :
V(X) :J [x —E(X))? f(x) dx
= J X2 — 2xE(X) + E2(X)] f(x) dx
xeX
= J [x2f(x) dx — 2xE(X)f(x) dx +E2(X)f(x) dx]
xeX

=J X2 f(x) dx+J —2xE(X) f(x) dx+J E2(X) f(x) dx
xeX xeX

xeX

:J x2 f(x) dx —2IE(X)J x f(x) dx +IE2(X)J f(x) dx
xeX xeX XeX
— — —

=E(X?) —E(X) =1

=E(X?) — 2E%(X) + E3(X) = E(X?) — E?(X)



Espérance de la loi uniforme discréte




Espérance de la loi de Bernoulli

Pour la loi de Bernoulli: x =0,1 P(X =x)=p* (1 —p)1—:

E(X)=) xP(X=x)

xeX

1
=) xp (1—p)"
x=0

=0p°(1—p)"” +1p' (1—p) "

si x=0 si x=1

=p



Espérance de la loi Binomiale

Pour la loi Binomiale : Yk € [0, . .., nl, P(X = k) = Ck p¥ (1 —p)(n=H
(indication : kKCk = nCk~]) :

E(X)=) kP(X=k)

keX

=2 kCipt(1—p)"¥
k=0

n
=) kCip(1-p'"¥
k=1



Utilisons : kCX = nCk~1 Remarquons que :

n!
KCh = K Kt Rt
n!
=K (k—1)(n—k)!
n!
(k=D (n—k)!
_ nx(n—1)!
(k—1)!(n—k+170—1)!
. (n—1)!

k—1)in—1—(k—1)!

=Gy

Ce résultat est intéressant et pourra étre réutilisé : kCk = nCk—!,
(k—1)Ct ] =(n—1)Ck 2, (k—2)Ck2=(n—-2)C3, ...



On remplace dans I'expression qui nous intéresse pour se rapprocher du
bindbme de Newton :

E(X)=) kCypt(1—p)m
k=1
=) nCkipt(1—p)nH
k=1

=n) Ckip(1-p¥
pam



Ony est presque :

n
E(X)=n) Cyip (1-p)n ¥
k=1

Posons le changement d’indice suivant: i=k—1< k=i+1.
Quand k =1,i=0.

Quandk=n,i=n—1.

Il ne reste plus qu’a remplacer tous les k — 1 dans I'expression :

n—1
E(X)=n) C, p*" (1—p)m
i=0

n—1

=np) Crap (1—p 1

i=0

On reconnalt le bindme de Newton réécrit pour la puissance n— 1. On a
donc :
E(X) =nplp+ (1 —p)""
=npx 171
=np



Espérance de la loi de Poisson

Kg—A .

Pour la loi de Poisson : Vk € [0, +ool, P(X =k) =22~

E(X)=) kP(X=k)
keX

“+o00 K
=3 ke
k=0 :
+o0
)\k
_ —A
- Z ke kI
k=1

7)\-%—00 )\k
=€ gkkx k—1)i




+o0

Ak71
20=e 3
k=1 ’

A nouveau petit changement d’indice : i = k — 1.
Quand k=1,i=0.
Quand k = +o0, | = +o0.

Il ne reste plus qu’a remplacer les k — 1 dans I'expression pour utiliser le DL :
oo i
E(X)=e ™) T
=Ae e
=A



Variance des lois discrétes classiques

On va commencer par utiliser V(X) = E(X?) — E?(X) car on a déja calculé
E(X).

Pour les deux dernieres lois, on verra qu’il est plus simple d’utiliser
V(X) =E[X(X —1)] +E(X) — E3(X).



Variance de la loi uniforme discrete

Pour la loi uniforme vk e X =[1,...,nl, P(X =Kk) = |
Commencons par calculer E(X?).

E(X?) =) KP(X=k)

keX

_1n(n+1)2n+1)
“n 6
_(n+1)(2n+1)
-6



Pour la variance :

V(X) = E(X?) —E2(X)
_(n+1)@n+1) (n+1>2

6 2
_(n+1)2n+1) (n+1)2
- 6 4
_2(n+1)(2n+1)—3(n+1)?
N 12
_(n+1)22n+1)—3(n+1)]
- 12
_ (n+1)[4n+2—-3n—3)]

- 12
(n+1)(n—1)
n 12
" -1

12



Variance de la loi de Bernoulli
Pour laloide Bernoulli: x =0,1 P(X=x)=p* (1 —p)":

E(X?) =) x*P(X=x)

xeX
1
_ ZX2 px (1 _p)(17x)
x=0

=02 p° (1—p)=0) + 12 p! (1— )"
=p

Pour la variance :

=p(1-p)



Variance de la loi Binomiale

Pour la loi Binomiale : Vk € [0, .. ., nl, P(X=k)=Ckprk(1—-p)nh,

utilisons V(X) = E [X(X — 1)] + E(X) — E3(X).

EX(X—1)] =) k(k—1)P(X =k)

keX

=) _klk=1Cypc(1—p)m
k=0
n

=) klk=1)Cyp“(1-—p" ¥

k=2

car pour k = 0 et k = 1, le terme générique s’annule.



Il est facile de réutiliser I'astuce de I'espérance et de montrer que :
kCf = nCt|
(k—1)Ct 1 =(n—1)Ck2

n—1 —
Remplagons :

n

EX(X—1)]=) k(k—1)Ckp*(1—p)"*
k=2

=) nin-1)C5p(1—p)*

k=2

n
=n(n—1)Y CiZp* (1-p)*
k=2



EX(X-1]=n(n—1)) Cy5p (1—p)*
k=2

Pour se ramener au binbme de Newton cette fois pour une puissance n— 2,
on fait le changement d’indice suivant : i = k — 2. Quand k = 2, i = 0. Quand
k =n, i =n— 2.1l ne reste plus qu’a remplacer dans I'expression :

E[X(X — n(n—1) Zanp —p)"k

n—1 Z Cn » pl+2 p)nf(i+2)

n—2
=n(n=1))_ Cp,pp?*(1—p)" ="
i=0
n_2 . . .
=nln=1)p*)_C,,p (1—p)" 2"

i=0

=n(n—1)p* x (p+1—p)"?

=1

=n(n—1)p?



Reste a calculer la variance :

V(X) =E[X(X —1)] +E(X) — E*(X)
= n(n—1)p® + np — (np)?
— Pp? — np? + np — M2p?
= np — np®
=np(1—p)



Variance de la loi de Poisson
Pour la loi de Poisson : Vk € [0, +ool, P(X = k) = 2e "

EX(X—1)] =) k(k—1)P(X =k)
keX

+o0 K
=) kik—1) e
k!
k=0
+00
)\k
_ —A
=) klk—1)e M
k=2
)\2)\k72

:ék(k_”e#\kx k—1) x (k—2)!

=) k—2)

k=2




A nouveau petit changement d’indice : i = kK — 2. Quand k = 2, i = 0. Quand
k = 400, i = +oc0. Il ne reste plus qu’a remplacer dans I'expression.

A 2+oo A2
EX(X—1)]=e"A Z(k—2)!
k=2
“+o00 i
}\I
_ AAx2 N
=e V) 5
i=0
_67A7\26>\



Espérance de la loi uniforme continue

~2(b—a)



Espérance de la loi exponentielle

Ae ™ ¥x>0,A>0
flx) = .
0 sinon

=
x
I

J x x f(x) dx
xeX

“+oo
J X x Ae M dx
0

Pas de primitive évidente.

On va avoir recours a une intégration par parties.



Intégration par parties

(u(x) v(x)) =u'(x) x v(x)+ u(x) x v'(x)
b b
u'(x) x v(x) dx + [ u(x) x v'(x) dx

a

& [: (u(x) v(x))" dx = L

b b

u'(x) x v(x) dx+J u(x) x v'(x) dx

a

< [u(x) x v(x)]g :J
b

b
@J u'(x) x v(x) dx = [u(x) x v(x)]g—J u(x) x v'(x) dx

On décompose la fonction de gauche qui n’a pas de primitive évidente en
- une fonction de primitive évidente : u’(x);
- et telle que u(x) x v’(x) ait une primitive évidente.

Reste a définir qui est u’(x) et qui est v(x)...



Intégration par parties

b b
J u'(x) x v(x) dx = [u(x) x v(x)5 —J u(x) x v'(x) dx

a

+o00

E(X) = J X x Ae ™ dx
0

Posons : u’(x) = Ae ¥ qui a une primitive évidente et donc v(x) = x.

On en déduit : u(x) = —e et v/(x) = 1.
4 ~+o00
E(X) = [-xe ™]~ —J — e M dx

= lim (—xe™) — (=0 x e*?) +J e ™ dx



Variance de la loi uniforme continue

“3p—a 7

_ (& +ab+ b?)(b— a)

3(b—a)
& +ab+ b
B 3



On en déduit la variance :

V(X) = E(X?) —E?(X)
_ &+ ab+ b2 B (aer)2

3 2

_4(&+ab+b?) —3(a+b)
B 12
_ 4a° +4ab+ 4b® — 32 —6ab — 3b°
B 12
@ —2ab+b?
B 12

(b—a?

RSP



Variance de la loi exponentielle

Ae ™ ¥x>0,A>0
flx) = .
0 sinon

E(X?) :J x? x f(x) dx

xeX

“+oo
J X2 x Ae M dx
0

Pas de primitive évidente.

On va avoir recours a une intégration par parties.



b b
J u'(x) x v(x) dx = [u(x) x v(x)]5 —J u(x) x v'(x) dx

+o00
E(X?) =J x2 x Ae™™ dx
0

Posons : u’(x) = Ae~** qui a une primitive évidente et donc v(x) = x2.

On en déduit : u(x) = —e ™ et v/(x) = 2x.

+o00
E(X?) = [-x?e ™],” —J —2xe ™ dx
0
+00
= lim (—x?e ™) — (0% x e ™*?) +J 2xe ™ dx

X—+o00 0
“+o00
:J 2xe ™ dx

0

pas de primitive connue. Donc soit on refait une intégration par parties, soit
on remarqgue la ressemblance avec I'expression de I'espérance...



I
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On en déduit la variance :
V(X) = E(X?) —E?(X)
_2 (1Y
T2 A
1
Y



VIII- Exercices de récapitulation



Exercice récapitulatif 1

Pour déterminer k, supposons que f soit une densité, c’est-a-dire
/2 f(x)dx = 1. Manipulons le membre de droite :

+oo +00
J f(x)dx:J kx—*dx

—00 [¢]

+o00

=k X~ *dx

—

[¢]

q +oo
1 —a+1
oc+1 le

M
b

=k

|—|

=

9

k

— X

0— puisque x —1 >0

- (oc— 1)6“ 1
En égalisant a 1, on trouve donc :

k

e 1& k=(ax—1)0*">0, cequiestcohérent.






+o00
J x2(a—1)0% Tx~*dx

+o00
(o —1)p%" J X~ %+2dx

0
+o0

1
_ ox—1 —a+3
(x—1)0 {fochSX L

(oc—1)6°‘*1{ 1 T‘”

xx—3

0

(x—1)0x" 1 .
3« 0_6“*3 puisque «x —3 > 0
(o —1)0%T
o —3)gx-3
o—1 02




V(X) = E(X?) — E3(X)
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X
:J (a—1)0*"u*du six>0
]

=(a—1)0%" J u=*du
0

1X
— (OC— 1)90(71 I:%_HU7“+1
- 40
(=101 "
R ust ]
C(a=1)e [ 1
T -« | xe T gt
1 1
_ pa—1
=0 |:9cx71 ch71:|
eoc71




six<0
Six>0



Exercice récapitulatif 2
1+x Vxel-1,0]
f(x)=<¢1—x V¥xe[0,1] est-elle une densité de probabilités ?
0 sinon

1. La fonction doit étre positive ou nulle :
si x € [-1,0], f(x)=1+x¢€[0,1]

si x € [0,1], f(x)=1—-x¢€[0,1]
partout ailleurs, f(x) =0

2. La fonction doit étre continue sauf éventuellement en un nombre fini de
points : les cas a examiner ici sont les bornes des intervalles, c-a-d —1, 0 et

+1:

six=—1, f(-17)=0etf(—1") =1+ (—1) =0 donc continue en —1.
six=0, f(0O)=1+0=1etf(0") =1—0=1donc continue en 0.
six=+1, f(17)=1—1=0etf(17) =0 donc continue en +1.

3. Il faut que [ f(x)dx = 1.



Jj: f(x)dx = [1 f(x)dx + Ji f(x)dx + E f(x)dx + Lﬂo f(x)dx

o]
1

0
:0+J (1 +X)dx+J (1—x)dx+0

bbbl
+%(71))+(1 %(1)2)70






six € [0,1],

F(x)

:
|

00

1

f(t)dt

f(t)dt + r f(t)dt

o

+tdt+J (1—1t)d

~
|—|



Onadonc:

0 six < —1
x+3ix2+1 sixe[-1,0]
x—3x2+1 sixel0,1]
1 six>1



[

X2

)

1

L1 xf(x)dx +J xf(x)dx

0
9

1 +x)dx+J x(1—x)dx
0
]

130 12 13
*ﬂf{?‘ﬁ*o

1(—1)2+1(—1J3) + (1—(”2—1(1)3



0
:J xzf(x)dx+J Xx2f(x)dx

1

0
:J x2(1 +x)dx+J x2(1 —x)dx
0



Partie 1 : les couples de VA



I- Couples de VAD



Loi de probabilités d’un couple de VAD

Soit (X, Y) un couple de variables aléatoires discrétes de loi de probabilités
jointe P(X = x, Y = y) définie pour un ensemble de définition (x, y) € X x Y.
Pour une variable, on parlait d’'une loi de probabilités jointe :

VxeX, P X=x)=P(X=x)>0

Y P(X=x)=1

xeX

Pour un couple, on parle de loi de probabilités jointe. Comme précédemment,
les probabilités sont positives et somment a 1 sur I'ensemble des possibles.

Vix,y)eXxY, PX=x,Y=y)=PX=xNnY=y)>0

Y Y PX=xY=y) =1

xeX yeyY



Principaux moments théoriques

Lespérance :
E(X)=) xP(X=x)
xeX
EXY)=) > xyP(X=x,Y=y)
XEX yeY
La variance :

V(X)= Y x— EX)PB(X = x)

xeX

VXY =) Y y—EXY)PP(X=xY=y)

XeX yeY



Lois marginales associées

Définir les lois marginales de X et Y, leur espérance et leur variance.

Les lois marginales de X et Y :
P(X = x) = ZIP’(X:X, Y=y)
yeY

P(Y=y)=) P(X=xY=y)

xeX



Espérances des lois marginales associées

Leurs espérances en repartant des formules déja rencontrées :

E(X)=) xP(X=x)

xeX

=Y x ) P(X=x,Y=y)

xeX yey

=Y ) xP(X=x,Y=y)

xeX yeY

E(Y)=) yP(Y=y)
yey

=2 v D PX=xY=y

yey xeX

=) ) yPX=xY=y)

yeY xeX



Variances des lois de probabilités marginales associées

Leurs variances :
V(X) =) [x—EX)PPX=x)

xeX

=Y X—EX)P ) P(X=xY=y)
xeX yey

—ZZX EXPPX=xY=y)
xeX yeY

V(Y)=) ly—E(Y)PB(Y =y)

yey
=Y y—EY)P ) P(X=x,Y=y)
yey xeX

=Y Y Iy-E(Y)PPX=xY=y)

yeY xeX



Application

y
1 2 3 4

-2101]03]| 0.1 0
x 0 ]0.1 0 | 0101
2 0 |01 c |01

Si c’est une loi de probabilités jointe, on va déterminer la valeur de c en
utilisant la sommation a 1 des probabilités sur 'ensemble des possibles.

> Y PX=xY=y) =1

xeX yey
©01+034+014+0+0140+01+014+0+01+c+0.1=1
sc=1—-1=0



Somme de lois

Caractérisez la loi de probabilités de X + Y.

Appelons Z la nouvelle VAD telle que Z = X + Y.
Construisons I'ensemble des possibles de Z. Pour cela, on calcule

VxeX,VyeY z=x+y

+ y
112|134
21110 1]2
x 0 21314
2|13 |4|5]|6

Les valeurs possibles de z (on ne répéte pas celles qui apparaissent
plusieurs fois) sont donc {—1,0,1,2,3,4,5,6)}.



Conditionnement

Pour finir de construire la loi de Z, il faut maintenant calculer la loi de chaque

occurrence.
P(Z=-1)=P(X=-20Y=1)=0.1
P(Z=0)=P(X=-2nY=2)=03
P(Z=1)=P[X=-2nY=3)U(X=0nY=1)
=P(X=-2NY=3)+P(X=0NY=1)
=0.1+0.1=0.2

P(Z=2)=P[X=-2NY=4)U(X=0NnY=2)
=P(X=-2NY=4)+PX=0NY=2)
=0+0=0




Caractérisez la loi de probabilités conditionnelle Y|X = 0.

Repartons du tableau des probabilités jointes et faisons apparaitre les
probabilités marginales P(X =2 ey P(X=x,Y=y)et
P(Y=y)=) ,ex P(X=x, Y y) en sommant par ligne et par colonne :

y
12 ]34 [PX=x
2 0103|071 0 05
X 0 01| 0 |0.1]o01 0.3
2 0 [01] 0 |o01 0.2
P(Y=y)[02]04]02[02] 1

P(Y|X = 0) s’obtient par la formule de Bayes :

B . _P(Y=ynX=0)

PO =yIX=0) =55 —0

Elle veut dire que maintenant, on ne s’intéresse plus a la distribution de Y
que pour X = 0. Il vient :

yx=0 |1 ]2|3|

P(Y=yIX=0) [ 53 [ o5 [ 03 |

N

ol
S

1

&)
o
w
o
w



Caractérisez la loi de probabilités conditionnelle X|Y = 1.

y
1 ]2 ]3] 4][PX=x
2 0103 [0T] 0 05
x 0 01| 0 |0.1]01 0.3
2 0 |01] 0 o1 0.2
P(Y=y)[02]04]02]02] 1

Méme raisonnement qu’a la question précédente. La formule de Bayes nous
dit :

PX=xNY=1)

PX=x|Y=1)= BY = 1)
soit la distribution de X quand Y = 1. Il vient :
X¥=1 | -2]0]2
PX=XV=1| 5% B &



Un moment théorique important : la covariance

Soient X et Y deux variables aléatoires discretes de loi de probabilités jointe
P(X=x,Y=y)avec (x,y) e X x Y.

On définit 'opérateur Covariance comme :
Cov(X,Y) =E{[X —EX)ILY —E(Y)]}
=) > X—EX)Iy—EY)PX=xY=y)

XeX yey



— E(XY) — E(X) E(Y).

Montrez que Cov(X, Y)

E{[X —E(X)I[Y —E(Y)]}

Cov(X,Y)

E[XY — YE(X) — XE(Y) + E(X)E(Y)]
=E(XY)—E[YE(X)] —E[XE(Y)] +E[E(X)E(Y)]

— E(XY) — E(X)E(Y) — E(Y)E(X) + E(X)E(Y)

=E(XY)—-E(X)E(Y)



Cov(X,Y)=) > x—EX)Iy—E(Y)P(X=x,Y=y)
XeEX yeY

=D Y yP(X=x,Y=y) —yE(X)P(X=x,Y =)
xexXyey

—XE(Y)P(X =x,Y =y) + E(X)E(Y)P(X = x, Y = y)]

=) Y xyPX=x,Y=y)—) Y yEX)P(X=x,Y =y)

xeXyey xeXyey
=Y D XE(YP(X=x,Y=y)+ > > EXEY)P(X=xY=y)
XeX yeY XeXyey
:ZnyIP’( =x,Y=y) ZyZ]P =x,Y=y)
xeXyey yeyY xeX
=P(Y=y)
Y)Y x) P(X=xY=y) Y)Y Y PX=xY=y)
xeX yeY xeXyey

=P(X=x)



Cov(X,Y) = ZnyIP’ =x,Y=y) ZyIF’Y Y)

XEX yeY yeY

=E(XY) =E(Y)

Y)Y xP(X =x) +E(X)E(Y)

xeX

=E(X)
— E(XY) — E(X)E(Y) —E(Y)E(X) + E(X)E(Y)

=0

=E(XY)-E(Y)E(X)



Que vaut Cov(X, X)?

En repartant de Cov(X, Y) = E(XY) —E(Y)E(X) etenposant X = Y :
Cov(X, X) = E(XX) —E(X)E(X)

E(X?) — E*(X)

V(X)



Que vaut Cov(aX, bY)?




Ou en replongeant dans les sommes :

Cov(aX,bY)=) > [ax—E(aX)llby —E(bY) P(X =x,Y =y)
xeX yeY

=> ) lax—aE(X)lby — bE(Y) P(X =x,Y =)

xeX yey

=Y ) ablx—EX)Ily—E(YIPX=x,Y=y)

xeX yey

—ab Y Y x—EX)y—E(Y]PX=xY =)

xeX yey

=abCov(X,Y)



Covariance de deux VAD indépendantes

Que vaut Cov(X, Y) si les deux variables aléatoires X et Y sont
indépendantes en probabilités ?

Lindépendance en probabilités implique :

PX=xNY=y =PX=x)P(Y=y)

Donc :
E(XY)=) Y xyP(X=xY=y)
xeX yeY
=) > xyPX=x)P(Y=y)
xeX yeY
=2 XB(X=x)} yP(Y=y)
xeX yey
=E(X)E(Y)
Comme :

Cov(X,Y)=E(XY)—-E(Y)E(X)
=0 si indépendance



Autre fagon avec les sommes :

Cov(X,Y)=) Y x—EX)Ily—E(Y)IPX=xY=y)

xeX yeyY

=) Y x—EX)ly —E(Y)]P(X=x)P(Y =y)
xeX yeY

=) X—EX)IPX=x) > [y—E(Y)P(Y =)
xeX yeY

=E[X —E(X)] E[lY —E(Y)]

= [E(X) — E(X)] [E(Y) —E(Y)]

=0



Variance d’'une somme de VAD

Toujours dans ce cas, calculez V(X + Y). Comme

V(X) =) [x—EX)PP(X=x)

xeX

il vient :

VIX+Y)=) Y x+y—-EX+Y)PP(X=x,Y=y)
xeXyey

=) Y {x+y—EX) —EMIPPX=xY=y)

xeXyey

=Y Y x—EX)]+y-EV)PPX=xY=y)

xeXyey

=Y Y AX—EX)P+[y—E(Y)P+2x —E(X)]ly —E(Y)]} P(X

xeXyey
=Y Y X—EX)PPX=xY=y)+ )Y > [y—E(Y
xeXyey XeEXyeY

+ ) > 2x—EX)ly—E()P(X=x,Y =y)

XEXyeEY

=x.Y=y)

X=xY=y)



=P(X=x) =P(Y=y)

VX+Y)=) X—EX)PY PX=xY=y)+> [y—EY)P) P(X=x,Y=y)

xeX yey yey xeX
+2) Y X—EX)Ily—EY)P(X=xY=y)
xeX yeY
—V(X) V(Y)
=Y X—EX)PP(X=x)+) [y—E(Y)PP(Y=y)
xeX yey
+2) Y x—EX)Iy—E(V)IP(X=x,Y =y)
XeEX yeY
=Cov(X,Y)

= V(X) +V(Y) +2Cov(X, Y)



Si les deux VA sont indépendantes en probabilités : Cov (X, Y) = 0 donc

V(X + Y) = V(X) +V(Y)



II- Couples de VAC



Densité jointe d’un couple de VAC

Comment sait-on qu’on est en présence d’une densité de probabilités d’un
couple de VAC?

Loi de probabilités pour un couple de VAD :
-V y) €XxY, PX=x,Y=y)=P(X=xNY=y)>0.
B ernyey]P(X:X, Y=y)=1.

Une densité de probabilités de couple de VAC vérifie les conditions
suivantes :

-V(x,y) e X xY, fxy(x,y)=0.

- C’est une fonction continue (sauf éventuellement en un nombre fini de
points).

- Jex fyey fxy(x,y) dxdy = 1.



Exemple




Exemple




Soit (X, Y) un couple de variables aléatoires continues de densité de

4 1,5
probabilités jointe fx y(x, y) = {ny v'(x,y) €041 }.
0 sinon

Pour déterminer ¢ (une inconnue), il faut une équation :

4 5
J J fxy(x,y)dxdy =1 < J J cxy dxdy =1
xeX Jyey

x=0 Jy=1

4 5
@cj J Xy dxdy =1

x=0Jy=1

4 5
@CJ xde ydy=1
0

1
1,1%71 ,1°
‘:’C{EXHEVL”
<:>C><%(42—02)><1§(52—12)=1

S eox8x12=1

1
@C—%



Lespérance du couple

Définir I'espérance.

VAD :E(XY)=) ) xyP(X=x,Y=y)

X€X yeY

VAC :E(XY) = J

X

J xyfx y(x,y)dxdy
eX Jyey



La variance du couple

Définir la variance.

VAD:V(XY)=) Y xy—EXY)PPX=xY=y)

xeX yeY

VAC : V(XY) = J Ixy — E(XY)1? fi v (x, y)dxdy
xeX Jyey



Les densités marginales associées

Définir les lois marginales de X et Y, leur espérance et leur variance.
Les lois marginales de X et Y :

VAD :P(X=x)= Y P(X=x,Y=y)
yey

VAC : fx(x) = J fx.y(x,y)dy
yey

VAD:P(Y=y)= > P(X=xY=y)

xeX

VAC : fy(y) = J fx.v(x, y)dx

xeX



Fonctions de répartition jointe et marginales

La fonction de répartition F(.).

Xy
FX,Y(XY,V):J J fx v(u, v)dudv

Fy(x) LO f(u)du = LO Jj: f v (U, y)dudy

Fy(y)

Yy 400 ry
J fy(u)du:J J fx v(x, u)dxdu



Retour sur la covariance

VAD:Cov(X,Y) =) Y x—EX)ly—E(Y)P(X=x,Y=y)

xeX yeY

VAC : Cov(X, Y) = J xj X Bl — BBy (x,y)ddy
xeX Jye



Montrez que Cov (X, Y) = E(XY) —E(X)E(Y).

Cov(X,Y) = J E(Y))fx.v(x, y)dxdy
ex yE‘d

yey

J x[ Xyfy (x, y)dxdy — yE(X)f.v (x, y)dxdly
— XE(Y)fy.v (x, y)axdy + E(XE(Y)fx.y (x. y)xdly]

J xyfx y(x, y)dxdy — J J YE(X)fxy(x, y)dxdy

xeX JyeY xeX Jyey

J J Y)hey(x, dexdy+j J E(X)E(Y)fx.v(x, y)dxdy
xeX JyeY xeX Jyey

J j xyfy (X, y)dxdy — E(X )J yj fv(x, y)dx dy
xeX Jyey yey xeX
=fy(y)

Y)j xj fx,y(x,y)dydxm(xm(nj j v (X, y)dxdy
xeX yey xeX Jyey

=fx(x) =1



CoviX, Y):J J X}/fx,Y(X,}/)dXdy—E(X)J yhy (y)dy
xeX Jyey yey

=E(XY) =E(Y)
— ]E(Y)J xfx(x)dx +E(X)E(Y)
=E(X)

— E(XY) — EX)E(Y) —E(Y)E(X) + E(X)E(Y)

=0

—E(XY) — E(Y)E(X)



Covariance et indépendance

Que vaut Cov(X, Y) si les deux variables aléatoires X et Y sont
indépendantes en probabilités ?

Lindépendance en probabilités implique :

fxy(x,y) = fx(x) fy(y)

Donc :
:J J nyx y(X, y)dxdy
xeX Jyey
|| wsianiyiay
xeX Jyey
:J xfx(x XJ yfy(y)dy
yey
=E(X)E(Y)
Comme :

Cov(X, Y) =E(XY)—E(Y)E(X)
=0 siindépendance



Fonction de répartition et indépendance

fx.v(u,v) = fx(u) fr(v)

@J;O J'ioo fx v(u, v)dudv = J:o KOO fx(u) fy(v)dudv

X y
fx(u)duJ fy(v)dv

(oo}

< Ex, Ji)o fx.y(u, v)dudv = J

—00

Fx,y(x.y) Fx(x) Fy(y)



Partie 2 : Inférence statistique



[- Construction d’'un estimateur



Exemple de questions

Vous jouez a pile ou face et vous comptez le nombre de pile. Vous disposez
d’un échantillon aléatoire de N tirages (Xj, Xz, ..., Xy) pour lesquels vous
observez la réalisation de pile (succés codé 1) (xq, X2, ..., Xn)-

- la loi de cette expérience est la loi de Bernoulli : donne la probabilité de
succes (p € [0, 1]) ou d’échec (1 — p) de I'expérience.

- On suppose que chaque tirage ou variable aléatoire de I'échantillon suit
la méme loi de Bernoulli de paramétre p € [0, 1] et quelles sont toutes
indépendantes.

- Loi de probabilités de Bernoulli de paramétre p € [0, 1] :
B(X; = k) = p(1 —p)' ¥

avec k = 0, 1 (resp. échec, succes).



Exemple de questions

Vous étes assureur et vous étes intéressés par le nombre des sinistres sur
une certaine période. Vous disposez d’'un échantillon aléatoire de N clients
(Xy, Xz, ..., Xn) pour lesquels vous observez le nombre de sinistres réalisés
(X1,X2, ey XN).

On suppose que la loi sous-jacente est la loi de Poisson (loi des
événements rares comme les accidents).

On suppose que chaque variable aléatoire de I'échantillon suit la méme
loi de Poisson et qu’elles sont toutes indépendantes.

On suppose donc ici que tout le monde a la méme probabilité de
sinistres...!??

Sa loi de probabilités :

avec x; € N.



Les données

Echantillon = 1 groupe d’observations tirées "au hasard” dans la

population

iid = identiguement et indépendamment distribués
une observation de I'échantillon x; est une réalisation particuliere d’'une

Variable Aléatoire (VA) X;

i

1

2

N

X

X1

X2

XN

Une VA mesure quantitativement le résultat d’'une expérience aléatoire
grace a sa loi de probabilités caractérisée par un ou plusieurs

parameétres.

Ces parameétres sont inconnus, on va donc chercher a les estimer avec

des outils fiables.



Lestimateur

Lestimateur est un outil général issu d’un critére d’estimation

sert a “deviner” la valeur du paramétre de la loi caractérisant une
population grace a I'échantillon.

I'échantillon (Xi, Xz, ..., Xn) = ensemble de VA supposées iid.

le maximum de vraisemblance : "quelle valeur des parametres de la loi
permet de maximiser le log de la probabilité de I'’échantillon ?”

max InP{(X; =x1) N (Xe =X) N--- N (Xy = xn)}

Permet de déduire une formule générale pour calculer la valeur du ou
des parametres de la loi sous-jacente au phénomene étudié et suivie
par les VA : I’estimateur

Permet de calculer une valeur quand appliqué a I'échantillon :
I'estimation



Le maximum de vraisemblance : le cas discret

Soit une suite de n VAD iid (X;, X;, .. ., X,).

On a vu que pour deux variables aléatoires X et Y indépendantes en
probabilités, on a :

P{(X=x)n(Y =y)}=P(X =x) xP(Y =y)

On généralise :

P{(Xi = x) N (X2 =x)N--

En appliquant le logarithme :

In{H]P’ } Zln (X=x)]=L()



Le maximum de vraisemblance : le cas continu

Soit une suite de n VAC iid (Xi, Xz, ..., Xn).
On a vu que pour deux VAC X et Y indépendantes en probabilités, on a :

fxy(x,y) = fx(x) fy(y)

Comme indépendantes et identiques,

En appliquant le logarithme :

in{ [T} =3 Inlix(x)) = £()
i=1 i=1



Le maximum de vraisemblance

On notera de fagon générique dans ce qui suit £(6; x) la fonction a
maximiser.

Elle dépend

- du ou des parametres inconnus 6 qui est soit un scalaire, soit un vecteur
de k paramétres 0 = (01,05, ...,04)";

- des observations de I'échantillon notée x = (x1, X, . .., X») .

Le programme s’écrit :

0= arg max L£(0; x)



Trouver le maximum revient a calculer la dérivée de la fonction par
rapport a I'inconnue. En la solution 0, cette dérivée est égale a 0. Cela
nous donne ici une équation a une inconnue ou un systeme de k équations a
k inconnues A.

Comme cette condition est valable pour un maximum ou un minimum, il faut
s’assurer qu’on est bien a un maximum en vérifiant le signe de la dérivée
seconde.



Le Maximum de vraisemblance pour k = 1 parametre inconnu

0L C s L
1. On calcule %(9 X), la dérivée a l'ordre 1, qui doit s’annuler pour un

maximum :

028 L, - .
2.0n calcule (6 X), la dérivée du second ordre, pour étudier son signe :
a%
692 (0; x) < 0, VO, on est a un maximum global ;
. 0%0 ~ . . . N
Si w(e; X) < 0 pour le ou les points candidats trouvés, on est a un

maximum local.



Le Maximum de vraisemblance pour k paramétres inconnus
1. On calcule le systéme des dérivées partielles premiéres (ou gradient) et
on cherche les 0 qui vérifient :

AL ~

ae1(e X)=0
9@:x) =0«

L~

aek(e x) =0

2. On calcule les dérivées partielles secondes (ou matrice Hessienne) :

024 224 224
202 %) garae, %) o Fe,08, 0N
H(O:x) = ; S
024 224 024
0; 0x) ... o2
50,00, %) Fo,00, 0 aez (%)

si les mineurs de H(0; x) alternent de signes en commengant par le
négatif, on est a un maximum global ;

si les mineurs de H(0; x) alternent de signes en commengant par le
négatif, on est a un maximum local;



Remarques

Pour k paramétres inconnus, il faut k dérivées partielles premieres.

Il ne faut pas confondre g(0; x), qu’on a nommé gradient et qui dépend des
données, avec g(6; X), qui dépend des VA et qu’'on nommera score.

Le score est aléatoire comme fonction des VA. Une propriété importante est :

E(g(6; X)) =0

De méme pour la Hessienne déterministe H(6; x) et la Hessienne
stochastique H(6; X).

La matrice Hessienne est carrée, de format k et symétrique.



Application : a la loi de Poisson de paramétre A > 0. A
-

On sait que Vx; € [0, +oo[, P(X = x;) = ol e,

In[P( =In (}\Xle )
X;!

=In(Ae) —In(x;!)
=In(M)+1In(e ) —In(x)
=In(A) —Aln(e) —In(x;!)
=X In(A) —A —In(x!)
On peut alors déduire la log-vraisemblance de I'échantillon :

X) = i In[P(X = x;)]

i

- i (X;iIn(A) =X —In(x;))
i

= ix,-ln()\) 7i)\*iln[xll)
i i it

A i Xj — N\ — i In(x;!)
i=1 i=1

. Prenonsle In(.) :




Calculons la dérivée premiére en partant de I'expression trouvée a la
question précédente :

LX) =In(A) Y x—n—) In(x!)
i=1 i=1

AL o O[In(A) XLy xi— A=Y In(x!)]
NN Xy x]  am)  d[XT In(xh)]
B oA A oA
~—

=0

R N (0 10N
<ZX> T



Calculons la dérivée premiere en la solution :

oL ~
ﬁ()\,x) =0

@%Zx,-—nzo

i=1



Calculons la dérivée seconde comme la dérivée de la dérivée premiere :

0L
2L 0 |:a()\xx)
e WX =
1
0 (X > Xi)
S T —

)

i=1

1 n
~— i=1
>0 ~—~—
>0

C’est donc un maximum global.



Remarque

On notera :

>)
Il

A(x) = X : 'estimation = un nombre

\=A(X) = X : l'estimateur = une VA



Application a la loi de Bernoulli de paramétre p

Onsaitque x; =0,1 P(X = x) =p% (1 —p)"=*). On calcule son In(.) :
(

In[P(X = x;)] = In (p¥ (1 —p)"=))
In(p) + In ((1 —p)")
x,In(p) +(1=x)In(1—p)
On peut alors déduire :

X) :ZIn[]P’(X:

—Z x;iIn(p) + (1= x) In(1 —p))

= Zx,-ln[p) + Z(1 —Xx)In(1—p)
i=1 i=1

p)Y X+In(1—p) > (1—x)
i=1

i=1



Calculons la dérivée premiére :

ZX,+In1f mex,-)

i=1

3L, o (P X xi+In(1—p) > (1—x)]
%(p:x)_ ap
AP Xl x] | dn(1—p) X1 (1—x)]
= +
op op

b2 X'} 5

S PR DML

i=1

. dln(1—p)]
Z“ —Xi):| X nT

i=1



Posons la dérivée premiéere en la solution :

0L

a*p(P.X) 0

1 & 1 <
& = ~ Y 1—x)=0
P 1—/0; ’
1 1
= = = = (1 X)
pS PZ ’
@1:,6:2:"7:1,(11 X;)

p 2 it Xi
NENRNES A%

p it Xi
@1—17 n__

p Y X
el__r

P XX
DN EY .
@p== =X



op? op
- [127:1)(/ 11?211 /}
op
ez ozt
o op op
= (i)ﬁ) x ag;,) - (iﬁ —x,-)> X 6(61;,))
n 1
= (Zx,) X —2— (;(1 —x,-)) X e

Yl X I Yi(1—=x)
p? (1—-p)?

>0

C’est donc un maximum global.



Remarque

On notera :

~ ~

p = p(x) =X : I'estimation = un nombre

/p=Pp(X) = X : l'estimateur = une VA



Application a une VAC de paramétre 0

Soit (X, X2, ..., X») une suite de n variables aléatoires continues
identiguement et indépendamment distribuées selon la densité de
probabilités
WS
f(x:0) = ;C% si x; € [0, cl
0 sinon

avec ¢ une constante connue.

On veut estimer le parametre 6 par maximum de vraisemblance :

9= argmaxLGx Zln (x;; 0



Calculons In[f(x;; 6)] en utilisant les propriétés de In(.) a savoir :

B
In(AB) = In(A) + In(B)
In(A%) = «In(A)

In (é> =In(A) —In(B)

xo
Inf(x;;0) =In | -—

n
= (1 — 1) In(x;) —In(0) —In(c?) attention a la priorité !



En utilisant les propriétés des sommes, on en déduit I'expression du critére a
maximiser £(0) :

X) :ilnf(x,-;e)
- Z Ki - 1) In(x;)— |n(e)—% In(C)}
- (5 - 1) ; In(x;) —iln(e) — i % In(c)
_ (15 . 1) im(x,-) —nin(0) - g n(c).



Calculons la dérivée premiere :

0L o [(E—1) X7 In(x) — nin(6) — g In(c)]
%(S,X) = ] 39 0
_0[gXiin(x)]  d[¥ 7 In(x)] dlnin(e)] d[§In(c)]
- 00 —_ 90 0 20
=0
(S i) 218 2lin(e)] 2 [4]
= <;|”(X/)) 699 ~"—5 —nin(c) aee

_ 1 nl y_ N nin(c)
=gz 2l — g+~
i=1



On en déduit la CPO :
%
00

—Azln nln():O

92

no nin(c)
@—ggln(x,)—g-i- = =0

92

0:x) =0

=) In(x)— nd + nin(c) =0

i=1

& no =nin(c Zlnx,

s0= In(c) — n Z In(x;)
i=1



Repartons de :

6L nIn(C)
200X ="g Z'" 5

et dérivons a nouveau par rapport a 0 :

o (- Thnb - g+ )

g0z )= %
(-0 %Y In(x)—n6 '+ nin(c)®?)
- 20

=420~ 3Zm )+ n02—2nIn(c)0°

n  2nin(c)
:@Zln(x,-)+¥f 5

_ 2y 7 )—2nin(e)  n
93 02
_oppZiinl9) —Infc) n

03 92



Le signe n’est pas clair. Evaluons I'expression en 6 = 0:

=—0

:721 In(x;) — In(c)

%L ~ = n
= —2nAE + An
93 02
2n n
=—= + =
02 02
= —Aﬂ < 0.
92

La dérivée seconde en le point candidat étant forcément négative
(n > 0,02 > 0), on est donc bien a un maximum local.



Application & la loi normale N (m, o?)

Soit une suite de n variables aléatoires (Xi, X, ..., X;) iid selon une loi
normale N(m, o) de densité de probabilité

1 o (x—m)?

2(X) = —=e 202
(bm, 2( ) 5702

On veut estimer les paramétres m et o® en résolvant le programme du
maximum de vraisemblance :

n
m, 6% = arg max L(m, 0% x) = Z Indp, 52 (X)
m, o
' i=1



mameG X) Zlnd)mgz X;)

mc

Calculons d’abord le log de la fonction :

1 _ g=m)?
In C[)m’62 (X,‘) =1In [\/ﬁe 202 :|

1 _ g=—m)?
=In [\/ﬁ} +In |:e 20 :|
In {(27{02)%] _ (Xiz— m)?

0—2
1 (x; —m)?
=—3n (2mo®) — ooz

(X; —m)?

— 1 1 2
——§|n(27'[)—§|n(0')— 242



Mettons le résultat dans la somme pour obtenir la fonction a maximiser (et
donc a dériver) :

(m, 62; x) Zlncb,,,(,z X))

1 i —m)?
—Z{ —In(2m) — 2|n(02)—%}






0y AL EmEm — gin(0f) — gl T 06— m)]
om ' om
o[gme] 0[5 ()] 0 [pk X 0q—mP]
om om om
=0 =0
_ 10 (X0 (xi — m)?]
202 om

1 o —m)?
_7Q; om



1 1 < 1
o [2 2 i~ '")2} (~o5)

i=1

n 1 & »
502 "3 20—

i=1

d[—2In(2m) — ZIn (0?) — 515 3 1Ly (X — m)?]
0(02)
d[-2In2m)] 3[2h(0%)] 3 [5e Tii06—m)]
0(02) 0(02) 0(02)
=0
no [In 0[]
2 { ; } 3(02)



ﬁ{zmxf—fm:o )

—n+H Y (x—m?=0

La premiéere équation peut se résoudre seule!









ama(gz)(m,cy ; X)
a?cfZF (m, 0% x)

0 (g2 X1 q(xi—m))

om
1 0(S0 - m)
T o2 om

1 1 a(X,'—m)
_?i; om

1 n
= >
i=1



~2 "D
Stam (M 0% X) 52557 (m, 0% x)

2.L2 2. 2L£2 2.
H(m, 0% x) = < Sz (m, 0% X) W(m,a ,X)>
o(

3 (%%(m, 0% x))  0(Zz X (xi—m))

0(02) B 0(02)

9L2(m, 0%) .

d _ 1
W(m,c;x): Z(Xi—x) <—§)



9L

H(m, 0% x) = ( a’"Z(m o) W{)(zm ’ )>
a(

9.2 9L
3tatiam (M 0% 52 maty

a.L?

alom ™)



0,2
W(m o ))

d
0(5;2)2 (m, 0?)

254 Zl 1 2)

0(02)
0 (gez 24 (xi —

m)?)

n 2n

T 254 254

no 1<
)= g5~ o X

204
+ 3(0?)

n

264




~ 0
H(m, 62 x) = 572 n
254

det(H(m, 52 X)) = ——&

Py _n n __m
det(H(m,G ,X)g) 77? X *% = ﬁ >0

Alternance de signes des mineurs en commengant par le négatif.
Donc la matrice est définie négative.

Donc on est bien a un maximum local...



[I- Propriétés d’un estimateur



La loi normale

Y—N(u, 62)
Y —
=M N, 1)
o
Y=p+0oX
TN
4‘/. \\\
.34 f‘ s l\".‘.‘.
/ "'\\
0.2 y’; ‘l"!,‘

! \
01 £ \
/

T T T T T T T
-4 -3 -2 -1 [} 1 2z
®

Soit n lois normales indépendantes X; ~ N(;, 02) :

n n n
3 xS o)
i=1 i=1 i=1



Définition d’une loi du Chi2

Vil ...l X< N(O,1)

Z=3 X' <x(n)

i=1

Propriétés intéressantes :

E (x?(n) =
V (x%(n)) =2n
X
0.5
0.4
0.3
0.2
0.1

[ r—




Les convergences : convergence en proba

On dit que la suite de VA X; converge en probabilité vers une VA X si Ve > 0 :
P(X,— Xl <e) — 1
n—-+o0

ou encore
P(X,—X|>¢e) — 0O
n—+o00

On écrit alors
X, 25 X

Pour le montrer, il suffit d’utiliser la condition suffisante suivante :

E(X,) — a

n—+o00
Vo, 0

=X, 2 a



Les convergences : convergence en loi

On dit que la suite de VA X; de fonction de répartition F; converge en loi vers
une VA X de fonction de répartition F si la suite F;(x) converge vers F(x) en
tout point ou F est continue. On écrit alors

X, £ X

Pour le montrer, il suffit d’utiliser la convergence en probabilités :

X, P X= X, -5 X



Les convergences : convergence en loi
Soit une suite de n VAC iid (X;, Xz, ..., Xn), chacune d’espérance m et de
variance o2,

< 1 —n
Soit X = = > X
La loi faible des grands nombres :

EX)=EX)=m _ ,
V(X :%2n_)_+> 0= X —EX)=m

X

En dilatant I'estimateur pour obtenir une VA avec une variance finie :

E(vVnX) =vnEX)=+vnm
V(VnX)=nV(X)=o0°

Le théoréme central-limite :

Vn X —E(v/n X) :ﬁ(X*m) L N0, 1)
V(vnX o

—



Les convergences : convergence en loi

En utilisant les propriétés de la loi normale, on peut approximer les lois :

VAX _E(iX) VAX-m) &0

VV(Vn X) ©

X—m
o
vn

e Xhs

£ N(0,1)

=



Les convergences : applications

Soit la loi Binomiale Z ~ B(n, p). Elle peut s’écrire comme la somme de n
lois de Bernoulli iid X; ~~ B(p).

On a donc : X, -2 p puisque V(X;) o0

Le théoréme central-limite : /o —2=L_ £, N(0,1). Il vient :

\/p(1—p)
Z/n—p Z/n—p Z—np
vn = =
" ei-p Vp(1—p)  +/np(1 —p)

On peut donc approximer une loi Z ~ B(n, p) par une loi normale
N(np, np(1 — p)) (généralement sin > 30,np > 5,n(1—p) >5.)

L N(0, 1)



Les convergences : applications

Soit la loi Poisson Z ~ P(A). Elle peut s’écrire comme la somme de A lois de
Poisson iid X; ~ P(1).

EX)=1 V(X)) =1
E(Z)=A V(Z)=A
E(X;) =1 V(X)) =1
On adonc : X; -2 1 puisque V(Xj) R 0.

Le théoréme central-limite : VA Q 55 N(0,1). Il vient :

ZN—1  ZA-1 Z-A L
VA = 7 —ﬁHN(OJ)

On peut donc approximer une loi Z ~» P(A) par une loi normale N(A, A)
(généralement si A assez grand).




Propriétés théoriques d’un estimateur

- A\ est un estimateur de A
- C’est une variable aléatoire.

- Il doit posséder des propriétés théoriques intéressantes



Propriétés théoriques d’un estimateur

1. Sans biais (= propriété théorique de I'espérance de la VA) :

E(A) = A (le paramétre inconnu)

2. Précision (= propriété théorique de la variance de la VA) :

3. Convergent en proba (= propriété théorique de la distribution de la VA) :
VAN — 0= A -2 A= VAN —A) - N(0, 02)

n——+o0

Remarque : ces propriétés concernent tous les estimateurs, quelque que soit
la loi sous-jacente.



Propriétés théoriques d’un estimateur

4, Efficace si sa variance = la borne CRFD :

avec

2L AL AL 2
IAX)=E (—W(A; X)) -V (a(?\; X)) —E (a(x; X))

la borne de

On appelle /(A; X) 'information de Fisher et /(?\TX)
Cramer-Rao-Frechet-Darmois. ’

Pour cette propriété, il est nécessaire de faire I'nypothése d’une loi
sous-jacente pour I'échantillon pour écrire la vraisemblance et en déduire
l'information de Fisher et la borne CRFD.



Exemple

iy , AP | Xi
La densité sous-jacente : fx(0; x;) = 0 exp (— 9>

. . . 1
La log-vraisemblance de I'échantillon : £(6; x) = —nIn(0) — 3 S Tix

oL

Le gradient : g(6; x) = 20

~q (0:X) = 77+*Z, 1 Xi

. ~ - , . 02
Lestimateur : 6(X) = X, d’espérance 6 et de variance r

Le score : g(6; X) = %(G;X) = ,g + 55 X iy X;avec E (g(6; X)) = 0.
, 024

La Hessienne : H(0; X) = 302 (0, X) = 63 Z, 1 X

Linformation de Fisher : /(8; X) =E (—H(6; X)) =V (g(6; X)) = 9—”2

1
16; X)’

Comme V(8(X)) = 8(X) est efficace.



Le cas de I'estimateur X

Soit une suite de n variables aléatoires iid (Xi, Xz, ..., X5).
Supposons que leur espérance est m et leur variance o2.

Cela signifie que ces n variables aléatoires sont toutes identiques entre
elles et ont toutes la méme loi, la méme espérance et la méme variance
qu’une variable X par exemple. C’est comme si on avait répété
I’expérience aléatoire liée a X, N fois de facon indépendante.

On a vu que dans beaucoup de cas, quand on voulait estimer un paramétre
inconnu qui est I'espérance de la loi sous-jacente E (X) = m, 'estimateur est
souvent la moyenne arithmétique des variables aléatoires sous-jacentes
o en

X=3 2 im1 Xi.

X est une variable aléatoire comme combinaison linéaire de variables
aléatoires.

Il est facile de montrer que cet estimateur est sans biais et convergent en
probabilités.



Espérance de X

E (X) _E(:’iX’)
()

1 n
:H;E(Xf)

1 n
= Z E(X) (car VA identiques)
i=1

:%nE(X)

=E(X)=m



Variance de X

V(X)=V (:7 Z x,)
NE
o (2)
1 . i=1
= ZV (X;) (car VA indépendantes)
i1

1 n
= Y V(X) (car VA identiques)
i

1




Convergence en proba de X

Que se passe-t-il lorsque n — 0o ?
2
lim V(X) = lim > =0

n—+o0o n—+o00 N

On en déduit donc que :



Convergence en proba de X

Plus la taille de I'échantillon augmente, plus la variance diminue jusqu’a
valoir 0.

Cela implique que la variable aléatoire X tend vers la valeur de son
espérance, sans aucun aléa possible.

Donc X est le meilleur estimateur de I'espérance de la variable aléatoire X,
jusqu’a lui étre égal si la taille de I'’échantillon augmente indéfiniment.

Ces résultats dépendent-ils d’'une loi de probabilités particuliere ?

Ce résultat est indépendant d’'un choix de variable aléatoire particulier. Il ne
vaut ici que pour des VA iid.

C’est la loi faible des grands nombres, qu’on note : X £, E(X). Si on veut
estimer I’espérance d’une VA X, il faut la répéter un trés grand nombre
de fois de fagon indépendante et calculer la moyenne des résultats.



lllustration de la convergence en proba de X avec la loi de Poisson et Julia



Convergence en loi de X

La convergence en loi résulte de la convergence en probabilités.

Comme on sait comment dégénére la loi, il suffit de la multiplier par \/n pour
la VA X ait une variance qui ne tende plus vers 0 quand n tend vers +oo.

On en déduit donc que +/n X suit approximativement une loi normale (donc
une loi non dégénérée car elle a une variance non nulle si n est assez grand).

C’est le théoréme central-limite.

VX BN X) L 301
V(vn X

—



Convergence en loi de X

Pour s’en convaincre :

Résultat encore une fois indépendant d’un choix de variable aléatoire
particulier.



Et si la loi sous-jacente X est iid normale ?

Si la suite de n variables aléatoires identiquement et indépendamment
distribuées (Xi, Xz, ..., X,) est N(m, 62), alors cela nous débloque un
résultat important.

En utilisant les propriétés de la loi normale, il vient que X = 1 5”7 | X; suit
une loi normale comme combinaison linéaire de lois normales.

On a caractérisé son espérance et sa variance :

EX)=m V(X)=—

On en déduit donc

Ce n’est plus une approximation!



Comment estimer la variance ?

Définissons la variance théorique :

=1y x-m’

Cet outil est intéressant (on verra pourquoi plus tard) mais inutilisable
puisque m est inconnu. On ne peut donc pas calculer cette quantité.

Il faut donc définir un outil plus opérationnel.



Comment estimer la variance ?

Définissons a présent la variance empirique :
- 1 & 2
) —_
Sh=- > (Xi—X)

i=1

On veut calculer E(S2) pour voir s'il est sans biais.

E(S%) =E

Essayons de voir ce que vaut E (X; — X)°.



Comment estimer la variance ?

(Xi — m+m—X)

(X —m) — (X —m)]?

(X — m)? + (X — m)® —2(X; — m)(X — m)]
(Xi —m)P+E(X —m)®> —2E [(X; — m)(X — m)]

=V(X)



Comment estimer la variance ?

= V(X) +V(X) 2B | (X~ m) (X —m)
j=1
= VX) +VX) — 2B | 3 (X~ m) (6 —m)
j=1
—VOX) +VX) - 2B | (X —mPE+ Y (X—m)(X—m)
" sii=j =LA
_ 2 n
= VX) +V(X) ~ 2B [(X— m)?] 2K [ Y O6—mix—m)
0 j=1j#
-0
- 2 2 ¢
= VX)) +VX) =2V == 3 EIX —m)(X—m)]

=y
=17 —Cov(X,X/)=0



Comment estimer la variance ?

E (X~ X)* = V(X) + V(X) ~ V()
=0+ o 2
n n
_ 0.27 10.2

D’ou

E(éﬁ):(”_1)027é02

n

La variance empirique S2 est donc un estimateur biaisé a distance finie
de o2...

. mais asymptotiquement sans biais :

E(éﬁ):(”;1)02 = o

n—oo



Un estimateur sans biais de la variance
Ce résultat décevant permet cependant de trouver un estimateur sans biais

pour la variance. Repartons de I'égalité trouvée et utilisons les propriétés de

I'espérance :
a n—1
]E(Sﬁ):( - )02
n a2y _ 2
. (n_1)IE(S,,)—G
n 1 & 2|
o (n_1>}E<nH (X,X))G
SE ()Y (x-%?| = o
n—1)n4 ! N
eB| Y (0-X)?| =
n—14 !

. . - 1 -
La variance empirique corrigée S2_, = — i (Xi— X)2 est donc un

estimateur sans biais de o°.



Un estimateur sans biais de la variance

Ce résultat ne dépend pas de la loi suivie par les VA.

Si on réintroduit I'hypotheése que la suite de n variables aléatoires
identiqguement et indépendamment distribuées (Xi, Xz, ..., X,) est N(m, ¢2),
cela nous permet d’obtenir les lois des estimateurs qu’on vient de voir.



Loi suivie par $2

~ 1 < 5
SP=-) (Xi—m
72 Xi—m
Cela peut paraitre un peu inutile puisqu’on ne peut pas I'utiliser dans la
pratique mais il nous servira plus tard comme résultat théorique. Posons :

2
n

n
n - ni 2 Xi—m
—S===) (Xi—m)P°= Z | ~x%n
LE=Lly -mP=y | T x2(n)
i=1 i=1 ——
~~iidN(0,1)
car on reconnait ici une somme de n lois normales centrées réduites

indépendantes au carré. C’est donc une loi x2(n). Il vient :
N a0\ A
E(58)=neE(S) =0

v(28) =2ne v (8) :$



Loi suivie par S2

n

~ 1 —\2
Si=12 (Xi—X)

i=1
Posons :

n nig o Z(Xx-X\
a2 Y\° _ i — 2
n—1cardanslasuitedes nVA (X; — X, Xo — X, ..., X,—X),onna
seulement n — 1 VA indépendantes pour pouvoir construire X a partir de
(X1, X, ..., Xa).
On en déduit :
nae\_ a2 =1,
E(?S,J_n 1<:>]E(S,,)_—n 02 # o?
) _oin— g2\ _2n-1) 4
V(GZS,,)fZ(n 1)@V<Sn)f o

Par bonheur, on retrouve bien le résultat d’estimateur baisé qu’on a démontré
précédemment.



2

Loi suivie par S5_,

Posons :

Il vient :
E(M§5_1) =n-1eE(8,) =0

02

(n—1)~ - 20*
V( = 35,1) =2(n-1) =V (8,) = .

Par bonheur, on retrouve bien le résultat d’estimateur sans biais démontré

précédemment.

Avec la variance de I'estimateur, on peut facilement déduire sa convergence
2

- -~ 204 S~ P
en probabilités : V <Sn_1> = oo 0=3S5;,_=o0".
— — 00




[1l- Intervalles de confiance



La loi de Student

Propriété intéressante :

X—N(0,1)
Z—x2(n)
X et Z indépendantes

X — T(n)

\/g

T(n) — N(0,1)

n—o00

Student density

Banr

k=1
K= infinity




La loi de Fisher-Snedecor

2
Xi=x=(vy)
2
Xo—=x"(v2)
X; et X; indépendantes
Xi
Vi
~ — Flw, v
X (vi, v2)
Vo
25 - ,
d1=1, d2=1
d1=2, d2=1
2 d1=5, 0272 —
d1=10, d2=1
15 d1=100, d2=100
1
05 \
S S=
0 1 2 3 4




La table de Fisher-Snedecor

Loi de Fisher
(Valeurs de z telles que Prob(F},, < ) = 95%)

apl 1 2 3 4 5 6 T B a 10 12
1116145 19950 21571 22458 23006 23399 236,77 B8/ 24054 241 24301
2| 1851 1900 1906 1925 1930 1933 1935 1937 1938 1940 1941
3| 1003 955 928 912 901 894 889 88 881 B9 B4
4
5

LT 6% 639. 639 6% 616 609 604 600 59 501
661 579 54l 59 505 495 488 482 47T 474 48|

6] 59 514 476 433 438 428 4,21 415 410 406 400
T 559 4,74 435 412 397 387 3,7 373 3,68 364 357
8| 332 446 407 384 360 338 350 44 33 33 3%
9 512 42 38 363 348 337 320 323 318 314 307
0 49 410 371 348 333 322 314 307 3m 298 281

11| 48 398 339 33 320 300 301 295 290 28 279
12 4,75 3,89 349 326 3,11 3,00 291 2,85 2,80 2,75 269
13| 467 381 341 318 303 292 288 277 271 267 260
14 460 T4 33 311 2986 285 276 270 265 260 233

306 290 279 2,71 264 259 254 248

@
'
»
e
o
8

449 3,63 324 301 285 274 266 250 2,54 249 242
445 359 320 296 281 270 261 255 249 245 238
44l 855 316 293 277 266 258 251 246 241 234
438352 313 29 274 253 254 248 240 238 M
435 349 310 287 271 260 251 245 239 235 238

432 347 307 284 268 257 249 242 2,37 23 22
4.30 344 3.05 282 2,66 255 246 240 23 230 223
428 --342 303 280 264 233 244 287 2% .2 2.20
426 3,40 301 278 282 251 242 236 2,30 225 218
424 3.39 299 276 260 249 240 23 2,28 224 216

4.17 332 292 269 253 242 233 227 22 2,16 209
408 223 2584 261 245 234 225 2,18 2,12 2.08 2.00
4.08 3,18 279 256 240 229 220 213 2,07 2.03 195

3% 311 272 249 233 231 213 206 200 195 188
394 300 270 246 231 219 200 208 107 193 188

3,92 307 268 245 229 218 209 202 1,9 191 1
3.84 3.00 260 237 221 210 201 194 1,88 1.83 173




Que sait-on?

On sait construire un estimateur @(X) pour les parametres de lois 0.
On connait leurs propriétés (sans biais, précision, convergences, efficacité).
On peut donc en déduire une estimation ponctuelle 8(x).

Ne pourrait-on pas fournir plutoét une fourchette ou un intervalle pour le
parametre inconnu, incluant la précision de I'estimation ?



Construction d’un intervalle de confiance

La démarche a suivre est toujours la méme, en deux temps.

- trouver une fonction de I'estimateur et du parameétre inconnu dont on
connait la loi, classique de préférence.

- utiliser ce résultat et la table de la loi pour un niveau de confiance donné
pour construire l'intervalle de confiance.



La théorie

0(X) — N(0,V(0(X)))

@(X) est I'estimateur sans biais et efficace du parameétre inconnu 0.
V(@(X)) est la variance théorique de I'estimateur.

Qu’il soit normalement distribué (ou asymptotiguement normal), les
propriétés de la loi normale nous donnent :

e(X);e N

V(6(X))

(0,1)

Il est en théorie possible de construire un IC pour ce paramétre inconnu a
partir de ce résultat.



Définissons l'intervalle de confiance a partir de la probabilité (1 — «)
que les réalisations de cette loi normale centrée réduite appartiennent
a l'intervalle [—t4, t,] (inconnu pour le moment) :

P —tm<m<ta =1—«

V(8(X))

Lintervalle pour la loi de 9(X) est ici symétrique puisque la loi normale est
symeétrique autour de 0.

La valeur de t, dépend donc de la valeur choisie pour (1 — «), la surface de
l'intervalle.



Exemple : si on désire qu'il y ait 95% de chances que les réalisations de la loi
normale appartiennent a I'intervalle de confiance, on choisit dans la table de
la loi normale centrée réduite la valeur de t, associée a la surface a gauche
de 97,5%, soit t, = 1,95. Pour 90% de chances, on choisira f, = 1, 64.



t, étant connu, il est possible de déduire I'intervalle de confiance du
paramétre inconnu 0 :

9(x)—0
:>7tcx<L<ta

V(8(X))

& — 1/ V(O(X)) < 8(x) —0 < t.\/V(O(X))

& 0(x) — te\/ V(B(X)) < 0 < 8(X) + t\/V(O(X))

On peut donc en déduire I'expression de I'intervalle de confiance :
0 c {@(x) — 1/ V(B(X)); 8(x) + Lo V(@(X))}

au niveau de confiance de (1 — ).




LIC est symétrique autour de I'estimation ponctuelle §(x).

La largeur de l'intervalle dépend :

- du niveau de confiance (1 — «) : plus (1 — «) est grand, plus t, sera
important et donc plus l'intervalle sera large;

- de la précision de I'estimation ponctuelle mesurée par I'écart-type

V(O(X)) : plus I'estimation ponctuelle est imprécise, plus l'intervalle
sera large. Une fagon de réduire cette imprécision est d’'augmenter la
taille de I'échantillon puisque I'estimateur est convergent en probabilités
(augmenter N réduit la variance de I'estimateur).



Dans la pratique

On ne connait pas la valeur de V(@(X)) car c’est la variance théorique.

Lapproche précédente n’est donc pas applicable.

o —

V(@(X)) étant inconnu, on va I'estimer en utilisant un estimateur de V(@(X)).
D’ou I'utilité d’avoir un estimateur de variance et de connaitre ses lois!!!!

Car la nouvelle variable aléatoire formée a présent par :
0(X)—0

V(8(X))

ne suit plus une loi normale centrée réduite !



En effet, on peut réécrire cette variable aléatoire comme :

~ 8o 8x-e
0X)-6 _  vvexy _ Vvewxy _ N(O1) (1)
B V(/é(\)()) — v (X)) x2(n—1)
Vel \/V(ﬁomH \/["—”wa \/ T
o

On voit bien qu’il s’agit du rapport entre une loi normale centrée réduite et la
racine carrée d’une loi du chi2 rapportée a son nombre de degrés de liberté.

On est donc en présence d’une loi de Student a (n— 1) degrés de liberté si
ces deux lois sont indépendantes (a admettre).



s —t,\VV(O(X)) <08(x)—0 < t.\VV(B(X))

= 0(x) =t VV(O(X)) <0 < 0(x) + t.\V V(B(X))

On peut donc en déduire l'intervalle de confiance :

0 e {6()()—1; V(0(X)); 0(X) + t.\V V(B(X))

X 509

au niveau de confiance de (1 — «).




LIC est symétrique autour de I'estimation ponctuelle @(x) puisque la loi de
Student est symétrique.

La largeur de l'intervalle 2 £, \/V(@(x)) dépend :

- du niveau de confiance fixé (1 — «) : plus (1 — «) est grand, plus t, sera
important et donc plus l'intervalle sera large ;

- de la précision de I'estimation ponctuelle mesurée par la variance
—_—

estimée V(0(x)) : plus I'estimation ponctuelle est imprécise, plus
lintervalle sera large. Augmenter la taille de I'échantillon peut encore
une fois permettre de corriger ce point.

- La loi de Student traduit une incertitude plus grande que la loi Normale
car la variance de I'estimateur est estimée alors que dans le cas normal,
on faisait comme si elle était connue. Dés lors, les valeurs critiques de la
loi de Student sont plus grandes que celles de la loi Normale.



Exemple : si on désire qu’il y ait 95% de chances que les réalisations d’une
loi de Student a 25 degrés de liberté appartiennent a l'intervalle de
confiance, on choisit dans la table de la loi de Student la valeur de t,,
associée a la surface a gauche de 97,5% ou de 2,5% a droite, soit t, = 2, 06.



La table de Student

LOI de STUDENT

Values for 1,
for Student’s t
distribution with v
degrees of freedom

F Natn 75
isn los Lers
2.078 | 6314 | 1271
1.886 | 2,920 | 4.303
2353 | 1182
2132 [ 2776
2005 | 1571
1.943 | 1447
1.895 | 1365
1.860 | 1306
1635 [ 2262
1812 | 1228
1796 | 2.201
1782 | 2179
1771 | 2160
1761 | 2.145
173 | oz
1746 [ 2120
1790 | 2110
1754 | 2101
1729 | 2093
1725 | 086
1721 | 2080
1717 | 2074
1714 | 2069
1711 [ 2064
1.708 | 2000
1.706 | 2036
1703 | 2052
1701 | 2048
1.699 | 2045
1.697 | 2042
1.684 | 2021
1.676 | 2.009
1671 | 2.000
1.667 | 1.904
1664 | 1.990
1662 | 1987
1660 | 1984
1659 | 1982
1658 | 1980
1645 | 1960




Rappels concernant I'estimation

Soit une suite de n variables aléatoires iid (Xi, X, ..., X,), d'espérance m et
de variance o?.

Un bon estimateur de m :

X=1% x

1

S|=

i
On a montré qu’il avait toutes les propriétés + avec la normalité : I'efficacité et
2
oz ~ [ox
la normalité : & X~~N(m, 7)'

Un bon estimateur de o2 :

~ 1 n _
Sha=——72 X=X

On connait sa loi et on sait qu'il est sans biais et convergent.

(n— )

X2(n—1)

]E(Sﬁ 1)
)=

V(S,% 1



Intervalle de confiance pour m

Comme , . o
XeoN(m, &) o XZEX) Xm0, 1)
n V(X) Vi

mais o2 étant inconnu, cela ne sert a rien en pratique.

On va I'estimer avec .
(n—1)85_,

S (0= 1)
On peut donc poser :
Xom _ JAX-m) N0y
Sn_ S B 2 @
ﬁ1 Sn_1 \/%Si? \/%

Apres avoir trouvé la valeur de t, dans la table de Student a (n — 1) degrés
de liberté pour le niveau de confiance 1 — «, I'lC s’écrit :

~

Sno1 _ Sh_
me {x—tmg-x+tanf1}

vn' vn



Intervalle de confiance pour o2

Utilisons le résultat : R
(n—1)82_,
0—2
Définissons I'lC comme la probabilité (1 — «) que les réalisations
appartiennent a [x,: X5,,] :

(n—1)82
P(X?nf<02n1<)(§up =1-«

La loi du x? n'étant pas symétrique, il n’y a aucune relation entre les valeurs
formant l'intervalle de confiance. La surface a I'extérieur de l'intervalle est
égale a «, supposée répartie en deux surfaces égales 5.

—x2(n—1)

x2, dans la table du x2 a (n— 1) degrés de liberté : surface a sa gauche
égale & § ou surface a sa droite égalea 1 — 3.

X5up dans la table du x® & (n — 1) degrés de liberté : surface a sa gauche
égale & 1 — & ou surface a sa droite égale a 5.

Exemple : pour une loi du chi a 30 degrés de liberté, I'intervalle de confiance
a 90% est [18,49;43,77].



La table du chi2

Table ¥ : points de pourcentage supérieurs de la distribution x*

025 010 005

000 000 000 000 002 010 045 132 27 384 502 663

001 002 005 010 021 0S8 139 277 461 599 738 921 1060
007 011 022 035 058 121 237 4l 625 782 935 1135 1284
021 030 048 071 106 192 336 539 171 949 1114 1328 1486

068 087 124 164 220 345 535 7.84 1064 1259 1445 1681 1855
099 124 169 217 283 425 635 904 1202 1407 1601 1848 2028
134 165 218 273 349 507 734 1022 1336 1551 1754 2009 2196
173 200 270 333 417 590 834 1139 1468 1692 1902 2166 2359
10 215 256 325 394 487 674 934 1255 1599 1831 2048 2321 2519
11 260 305 382 457 558 758 1034 1370 1728 1968 2192 2472 2675
12307 357 440 523 630 844 34 1485 1855 2103 2334 2621 2830

13 356

4 407 2106 2369 2642 29.04 3131
15 460 2231 2500 2749 3058 3230
16 514 2354 2630 2885 3200 3427
17 570 2477 2159 3019 3341 3572
18 626 2599 2887 3153 3481 371§
19 684 2720 30.4 3285 3619 3838
20 743 2841 3141 3407 3756 4000
21 8.03 29.62 3267 3548 3893 4140
22 864 3081 3393 3678 4029 4280

23 926 1019 1169 1309 1485 1814 2234 2714 3201 3517 3808 4164 4418
24 988 1086 1240 1385 1566 1904 23. 2824 3320 3642 3037 4298 4556
25 1052 1152 1302 1461 1647 1994 2434 2934 3438 3765 4065 4432 4693
26 1116 1220 1384 1538 1729 2084 2534 3043 3556 3889 4192 4564 4829
27 1180 1288 1457 1615 1811 2175 2634 3153 3674 4001 4320 4696 49.64
28 1246 1356 1531 1693 1894 2266 2734 3262 3792 4134 4446 4828 5099
29 132 1426 1605 17.71 1977 2357 2834 3371 3000 4256 4572 4959 5234
1378 1495 1679 1849 2060 2448 2934 3480 4026 4377 4698 5089 5367
2067 2204 2442 2651 2906 3367 3934 4561 5180 S55 5934 6371 6680
2796 2968 3235 3476 37.69 4295 4934 5633 6316 6750 7142 7617 79.52
3550 3746 4047 4319 4646 5230 5934 6698 7439 7908 8330 8840 9198

4875 5174 5533 6l:70 6934 7757 8552 9053 9503 10044 10424

SL14 5352 5705 6039 6428 TLIS 7934 8813 9657 10188 10663 11234 11635
5907 6174 65.64 69.13 7329 8063 8933 9865 10756 11314 11814 124.13 12832

Fssasuss
&
8
5

67.30 7005 7422 77.93 8236 90.14 9933 109.14 11849 12434 129.56 13582 140.19




On en déduit :

o~
2 (n—1)s,_, 2
= Xinf < o2 < Xsup
= —F < 70_2 < 71
=2 2
X (=185 X5y

(n—1)85 cR < (n—1)s;_,

2 2
Xsup Xinf

On peut donc en déduire l'intervalle de confiance :

o2 e (n_:)§%—1 : (n—1)s2_,

2
Xsup Xint

au niveau de confiance (1 — «).

Ici, IC non symétrique autour de I'estimation ponctuelle du parametre
inconnu. Comme précédemment, la largeur de l'intervalle dépend du niveau

de confiance choisi.



IV- Les tests



Rappels généraux sur la méthodologie des tests

Le ou les paramétres inconnus sont-ils statistiquement égaux ou non a telle
valeur supposée ?

La théorie des tests le permet, en se ramenant uniquement au choix entre
deux hypotheses antagonistes, notées H, et H, (ou H;). Lhypothése Hy,
encore appelée hypothése nulle, est privilégiée jusqu’au moment ou elle est
infirmée par I'observation.

Ainsi, le test a pour but de mesurer 'adéquation d’une hypothése a la réalité
observée a travers l'information apportée par I'échantillon.

On peut voir cela comme une distance entre I'’hypothése et I'observation

On retient plusieurs étapes dans la démarche des tests.



La formulation des hypothéses

Il est d’abord nécessaire de formuler les hypothéses a tester, et par voie de
conséquence, les erreurs de décision associées a ces hypotheses.

Supposons que I'on fasse un test sur le paramétre inconnu 6. On distinguera
différents types de tests sur un parametre.



Dans le cas des tests unilatéres, on teste I'égalité du paramétre inconnu 6 a
la valeur 6" supposée dans I'hypothése nulle contre la stricte supériorité
(respectivement infériorité) a cette méme valeur sous I'’hypothese alternative :

Ho: 0 =0
H,: 6>06M ou Hy: 6 <0



Dans le cas des tests bilatéres, on teste I'égalité du paramétre inconnu 6 a
la valeur 6" supposée dans I'nypothése nulle contre la différence
(c’est-a-dire la stricte supériorité ou infériorité) a cette méme valeur sous
I'hypothése alternative :

Ho: 6 =0
H,: 6 #£0M



Risques d’erreur et leurs probabilités

Deux actions possibles et donc deux possibilités de se tromper.

Hy vraie H, fausse
Accepter Hy - erreur 2de espece
Rejeter Hy | erreur 1ére espece -

Deux types de risques d’erreur :

- le risque d’erreur de premiere espéce : risque de refuser I'hypothése
nulle alors qu’elle est vraie. Sa probabilité est o = P(Hpl||Hp ).

- Le risque d’erreur de seconde espece : risque d’accepter I'hypothése
nulle alors qu’elle est fausse. Sa probabilité est § = P(Hyl|Ho)-

avec l'opérateur IP(.]|.) ayant pour premier argument une décision et pour
second un état de la nature (inobservable).

o = P(Hy||Hp) est donc la probabilité de décider de ne pas accepter Hy alors
que Hy est vraie.



Conditionnement par rapport a un état de la nature (H, vraie ou non) que
I’on n’observe pas et non un événement. Ce n’est donc pas une probabilité
conditionnelle.

On accepte ou on rejette I’hypothése nulle et rien d’autre ! Lhypothése
alternative ne permet que de définir la zone de rejet.



La statistique de test et la régle de décision

Trouver une statistique, permettant de mesurer 'adéquation entre I'hypothése
formulée et ce que disent les données pour répondre a la question posée.

- une fonction discriminante (ou pivotale)
- construite sous I'hypothese nulle,
- une "distance” entre I'hypothése et les données,

a comparer a une valeur théorique calculée a partir de la loi de
probabilités et définie a partir de la zone de rejet de I'hypothese nulle
construite a partir de I'hypothése alternative pour une probabilité de
risque de premiére espéce « donnée (Neymann-Pearson).

La régle de décision qui en découle permet ensuite de conclure.



Test bilatéral sur le paramétre inconnu ©

Hy: 6 =0
Hy: 0 +#6M

soit encore Hy : 6 — 6" = 0.
Du point de vue de I'estimation, mesurée par la distance 6(x) — 6" < 0.
Idéalement la distance @(x) — 0" devrait étre 0 si les données confirment H.

Mais il faut tenir compte de I'incertitude donc pas forcément 0 mais assez
petit pour confirmer.

On va utiliser une statistique fondée sur §(X) — 6" dont on connait la loi.

Sous Hy, I'espérance de cette loi doit étre 0 puisque E(@(X)) =0 =M,



e — o —

Figure — Zone de rejet test bilatere pour o« = 5%

~

Ici, la zone d’acceptation va se situer autour de 0 (sous Hy, 8(X) est centrée
sur 8%), jusqu’a deux valeurs situées de part et d’autre de 0 (du fait de H,).

- si @(x) — 0 tombe dans cette zone, on peut statistiquement accepter
Ho 0= 9"’0.

- Sinon, au-dela de cette marge (d'un coté ou de l'autre), Hy n’est plus
statistiquement acceptable.



En appliquant la définition de la probabilité du risque de premiere espece, et
en adaptant la regle de rejet de I'hypothése nulle :

P(Ho | Ho) = o) 16 =0
ﬁA ! o’

En utilisant I'événement contraire :

1—a=P ((3()()/:\9 € [~tui td |l e:e”o)
v(e(Xx))

SO ke
_p| g, <3O0

v(e(X))
~~T(n—1)

Il ne reste alors plus qu’a trouver la valeur de t, associée a la probabilité
centrale (1 — «) dans la table de Student T(n—1).



, 8(x) — 0Mo
Une fois trouvée t, dans la table, on calcule ()7 :

————

v(B(X)

Y _ oH

- si e(X)TeO € [—tx; ts], on est dans la zone d’acceptation du
v(6(Xx))

test et on accepte Hp ;

Sy ot

- si 9()()79 ¢ [—tx; ts], on est dans la zone de rejet du test et
V(6(X))

on ne peut pas accepter Hp.




On peut aussi réinterpréter les choses avec les intervalles de
confiance.

e @)

€ [ty 1] 5 0% ¢ {&x) — 4V VE()):8(x) + 1\ VB()

on est dans la zone d’acceptation du test ou la valeur supposée 8
est dans I'lC, on accepte Hp.

A gty 0% ¢ [B00) — 1y V8D 800 + 1/ VB0
V(B(X)) -

on est dans la zone de rejet du test ou la valeur supposée 08 n'est
pas dans I'lC, et on n’accepte pas Hp.

Attention : ne fonctionne que pour les tests bilatéraux au risque « et
un IC au niveau de confiance 1 — «.




Test unilatéral sur ©

Ho: 6 =0
Ha: 0> 0"

on utilisera comme fonction discriminante la loi suivie par I'estimateur de ce
paramétre en se plagant sous I'hypothése nulle. Ainsi :
6(X)—0
X8 — T(n—1)

—

V(0(X))
et en se placant sous H, vraie (c’est-a-dire 8 = 0'%) :
Y _ aH
X 0% s 11y
V(e(X))



Lhypothése alternative permet de définir la zone critique, c’est a dire la
zone de rejet de I’hypothése nulle connaissant la probabilité du risque
de premiére espéce «.

On raisonne de la maniére suivante : du fait de I'incertitude due au modéle, a
I'échantillonnage,. . ., on ne pourra probablement pas observer exactement
I'égalité a la valeur 60 méme si c’est bien le cas. On va donc se laisser une
certaine marge pour accepter Hp.



Posons que cette marge d’acceptation va jusqu’a une valeur critique t,,
inconnue mais supérieure a la fonction pivotale (du fait de I'hypothése
alternative). Laction d'accepter ou de rejeter Hy va donc se traduire dans la
position observée de la statistique relativement a cette valeur critique :

- alintérieur de cette marge, on peut statistiquement accepter I'hypothése
d’égalité du paramétre inconnu 0 a la valeur 8" supposée dans Hj.

- Au dela de cette marge, H, n'est plus statistiquement acceptable.

Area= 05

.

E—

Figure — Zone de rejet test unilatére droit pour o« = 5%



C’est ainsi que I'on va confronter notre hypothése aux données.

La probabilité du risque de premiére espece, a savoir rejeter I'hypothése
nulle alors qu’elle est vraie, se traduit par la probabilité que la fonction
pivotale tombe au dela de la marge acceptable avec la probabilité « :

o =P(Ho | Ho)

—P(Wme—e”o)
V(0(X))

-p (M/\GH > toc)
V(8(X))

ou t, est la valeur critique dans la table de Student pour la probabilité « au

dela de laquelle il n’est plus tenable de défendre I'hypothése nulle et ol on
doit donc la rejeter.



Une fois trouvée t, dans la table, on calcule

. 0(x) — Mo , .
- Si ———=—= < Iy, on est dans la zone d’acceptation du test et

—

V(6(X))
on accepte Hp;

. B(x) — 0t .
- si ———— > {4, on est dans la zone de rejet du test et on ne

V(8(X))
peut pas accepter Hp.




Prenons l'autre test unilatére sur le paramétre inconnu 6 :

Ho: 6 = 0%
H,: 6 <0



La zone d’acceptation va jusqu’a une valeur critique —t, inférieure a 0 (du fait
de I'hypothése alternative). Laction d’accepter ou de rejeter I'hypothése nulle
va donc se traduire dans la position observée de la fonction pivotale
relativement a cette valeur critique :
- alintérieur de cette marge, on peut statistiquement accepter I'hypothése
d’égalité du parametre inconnu 0 & la valeur 6" supposée dans H.

- En deca de cette marge, H, n'est plus statistiquement acceptable.

Figure — Zone de rejet test unilatére gauche pour o« = 5%



Comme précédemment, calculons la probabilité du risque de premiére
espece :

o =P(Hy | Ho)
_p (w <t ||e=eH°)
VX))

V(8(X))

ou —t, est la valeur critique de la table de Student pour la probabilité « en
deca de laguelle il n'est plus tenable de défendre I'’hypothése nulle et ol on

doit donc la rejeter.

Attention, ici il faudra utiliser les propriétés de symétrie de la loi de Student

pour trouver la valeur de —t, qui sera ici négatif.



Une fois trouvée t, dans la table, on calcule

V(B(X))
. 9(x) — oMo , .
- Si —=——=——= > —14, On est dans la zone d’acceptation du test et
V(0(X))
on accepte Hp;
. B(x) — 0t .
- si ————= < —t4, on est dans la zone de rejet du test et on ne
V(6(X))

peut pas accepter Hp.




Références bibliographiques

- Statistique et Probabilités, J.P. Lecoutre, Dunod.
- Statistique et Probabilités, C. Hurlin et V. Mignon, Dunod.

- Probabilités et Statistiques, A. Combrouze, Presses Universitaires de
France.



	Introduction
	Rappels
	Les Variables Aléatoires Continues : VAC
	Les couples de VA
	Inférence statistique

