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Préface

Dans ce cours, nous reprenons les premiers outils mathématiques nécessaires à l’ Économie et la Gestion
dont vous aurez besoin immédiatement dans les autres cours et plus tard. Ces notions seront approfondies
en L2 et/ou L3, en fonction des besoins.

Beaucoup a déjà été abordé et acquis au lycée. Pour certains, ce sera donc de l’approfondissement, de la
consolidation et quelques nouveautés. Pour les autres, ce n’est pas grave : on reprend tout en compliquant
progressivement (et encore, c’est tout relatif).

Les efforts à fournir seront cependant importants. Le temps sans cours doit servir au travail personnel :
acquérir les notions et comprendre nécessite du temps, de la concentration et de la pratique. Il vous faudra
donc de la discipline et de la régularité.

Il vous faudra

• comprendre le cours (en cours pour gagner du temps),

• connaître les définitions essentielles,

• travailler les exemples (les démonstrations vous permettront de mieux comprendre si vous êtes curieux),

• préparer les exercices qui seront discutés en TD pour pouvoir poser vos questions si besoin...

• et préparer les exercices supplémentaires qui ne seront PAS corrigés en TD. Le travail en groupe pendant
le semestre est encouragé.

En plus de ce document, les ressources à votre disposition :

• le site internet Exo7 où vous trouverez des vidéos et des exercices corrigés.

• Mathématiques en Économie-Gestion, S. Rossignol, Dunod, 2015.

• Mathématiques de base pour économistes, Y. Dodge, Springer 2007.

• Mathématiques pour économistes, C. Simon et L. Blume, De Boeck Université, 1997.

• Cours de mathématiques pour économistes, P. Michel, Economica, 1989.

L’évaluation se fera par deux contrôles (à mi-parcours et en fin de parcours) comptant chacun pour 50%.

Enfin, mes remerciements vont aux membres de l’équipe Exo7 qui a permis l’élaboration rapide de ce
document et à Stéphane Adjemian pour ses notes de cours de Calcul Économique 1 que ce cours remplace,
à Stéphane Adjemian, Simon Petit-Renaud, Anthony Terriau et Xavier Fairise pour les discussions dans
l’élaboration du programme de mathématiques de Licence.
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Systèmes
linéaires

Chapitre

1

Vidéo ■ partie 1. Introduction aux systèmes d’équations linéaires

Introduction aux systèmes d’équations linéaires

L’algèbre linéaire est un outil essentiel pour toutes les branches des mathématiques, en particulier lorsqu’il
s’agit de modéliser puis résoudre numériquement des problèmes issus de divers domaines : des sciences
physiques ou mécaniques, des sciences du vivant, de la chimie, de l’économie, des sciences de l’ingénieur...
Les systèmes linéaires interviennent à travers leurs applications dans de nombreux contextes, car ils forment
la base calculatoire de l’algèbre linéaire. Ils permettent également de traiter une bonne partie de la théorie
de l’algèbre linéaire en dimension finie. C’est pourquoi ce cours commence avec une étude des équations
linéaires et de leur résolution.
Le but de ce chapitre est essentiellement pratique : il s’agit de résoudre des systèmes linéaires. La partie
théorique sera étudiée dans le chapitre « Matrices » du cours Outils Math 2, l’année prochaine.

1. Résolution des systèmes linéaires de deux équations

L’équation d’une droite dans le plan (O, x , y) s’écrit

ax + b y = e

où a, b et e sont des paramètres réels, a et b n’étant pas simultanément nuls. Cette équation s’appelle
équation linéaire dans les variables (ou inconnues) x et y .

Par exemple, 2x + 3y = 6 est une équation linéaire, alors que les équations suivantes ne sont pas des
équations linéaires :

2x + y2 = 1 ou y = sin(x) ou x =
p

y .

Considérons maintenant deux droites D1 et D2 et cherchons les points qui sont simultanément sur ces deux
droites. Un point (x , y) est dans l’intersection D1 ∩ D2 s’il est solution du système :

�

ax + b y = e
cx + d y = f

(S)

Trois cas se présentent alors :

1. Les droites D1 et D2 se coupent en un seul point. Dans ce cas, illustré par la figure de gauche, le système
(S) a une seule solution.

2. Les droites D1 et D2 sont parallèles. Alors le système (S) n’a pas de solution. La figure du centre illustre
cette situation.

http://www.youtube.com/watch?v=0uYJ3RNL5SU
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3. Les droites D1 et D2 sont confondues et, dans ce cas, le système (S) a une infinité de solutions.

x

y
D1

D2

x

y

D1

D2

x

y

D1 = D2

F I G U R E 1.1 – Toutes les solutions possibles à un système linéaire de 2 équations.

Nous verrons plus loin que ces trois cas de figure (une seule solution, aucune solution, une infinité de
solutions) sont les seuls cas qui peuvent se présenter pour n’importe quel système d’équations linéaires.

1.1. Résolution par substitution

Pour savoir s’il existe une ou plusieurs solutions à un système linéaire et les calculer, une première méthode
est la substitution. Par exemple pour le système :

�

3x + 2y = 1
2x − 7y = −2

(S)

Nous réécrivons la première ligne 3x + 2y = 1 sous la forme y = 1
2 −

3
2 x . Et nous remplaçons (nous

substituons) le y de la seconde équation, par l’expression 1
2 −

3
2 x . Nous obtenons un système équivalent :

�

y = 1
2 −

3
2 x

2x − 7(1
2 −

3
2 x) = −2

La seconde équation est maintenant une expression qui ne contient que des x (1 équation à 1 inconnue
donc) et on peut la résoudre :

�

y = 1
2 −

3
2 x

(2+ 7× 3
2)x = −2+ 7

2
⇐⇒

�

y = 1
2 −

3
2 x

x = 3
25

Il ne reste plus qu’à remplacer dans la première ligne la valeur de x obtenue :
�

y = 8
25

x = 3
25

Le système (S) admet donc une solution unique ( 3
25 , 8

25). L’ensemble des solutions est donc

S =
§�

3
25

,
8

25

�ª

.
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1.2. Résolution par la méthode de Cramer

On note
�

�
a b
c d

�

�= ad − bc le déterminant. On considère le cas d’un système de 2 équations à 2 inconnues :
�

ax + b y = e
cx + d y = f

Si ad − bc ̸= 0, on trouve une unique solution dont les coordonnées (x , y) sont :

x =

�

�

�

�

e b
f d

�

�

�

�

�

�

�

�

a b
c d

�

�

�

�

y =

�

�

�

�

a e
c f

�

�

�

�

�

�

�

�

a b
c d

�

�

�

�

Notez que le dénominateur égale le déterminant pour les deux coordonnées et est donc non nul. Pour le
numérateur de la première coordonnée x , on remplace la première colonne par le second membre ; pour la
seconde coordonnée y , on remplace la seconde colonne par le second membre.

Exemple 1.

Résolvons le système

�

t x − 2y = 1
3x + t y = 1

suivant la valeur du paramètre t ∈ R.

Le déterminant associé au système est
�

�
t −2
3 t

�

� = t2 + 6 et ne s’annule jamais. Il existe donc une unique
solution (x , y) et elle vérifie :

x =

�

�

�

�

1 −2
1 t

�

�

�

�

t2 + 6
=

t + 2
t2 + 6

, y =

�

�

�

�

t 1
3 1

�

�

�

�

t2 + 6
=

t − 3
t2 + 6

.

Pour chaque t, l’ensemble des solutions est

S =
§�

t + 2
t2 + 6

,
t − 3
t2 + 6

�ª

.

1.3. Résolution par inversion de matrice

En termes matriciels, le système linéaire
�

ax + b y = e
cx + d y = f

est équivalent à

AX = Y

où A=

�

a b
c d

�

, X =

�

x
y

�

, Y =

�

e
f

�

.

Si le déterminant de la matrice A est non nul, c’est-à-dire si ad − bc ̸= 0, alors la matrice A est inversible et

A−1 =
1

ad − bc

�

d −b
−c a

�

.

L’unique solution X =
� x

y
�

du système est donnée par

X = A−1Y.
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Exemple 2.

Résolvons le système

�

x + y = 1
x + t2 y = t

suivant la valeur du paramètre t ∈ R.

Le déterminant du système est
�

�

1 1
1 t2

�

�= t2 − 1.

Premier cas. t ̸= +1 et t ̸= −1. Alors t2 − 1 ̸= 0. La matrice A =
�

1 1
1 t2

�

est inversible d’inverse A−1 =
1

t2−1

�

t2 −1
−1 1

�

. Et la solution X =
� x

y
�

est

X = A−1Y =
1

t2 − 1

�

t2 −1
−1 1

��

1
t

�

=
1

t2 − 1

�

t2 − t
t − 1

�

=

� t
t+1
1

t+1

�

.

Pour chaque t ̸= ±1, l’ensemble des solutions est

S =
�

�

t
t + 1

,
1

t + 1

�

	

.

Deuxième cas. t = +1. Le système s’écrit alors :

�

x + y = 1
x + y = 1

et les deux équations sont identiques. Il y

a une infinité de solutions :

S =
�

(x , 1− x) | x ∈ R
	

.

Troisième cas. t = −1. Le système s’écrit alors :

�

x + y = 1
x + y = −1

, les deux équations sont clairement

incompatibles et donc

S =∅.

Mini-exercices.

1. Tracer les droites d’équations

�

x − 2y = −1
−x + 3y = 3

et résoudre le système linéaire de trois façons

différentes : substitution, méthode de Cramer, inverse d’une matrice. Idem avec

�

2x − y = 4
3x + 3y = −5

.

2. Résoudre suivant la valeur du paramètre t ∈ R :

�

4x − 3y = t
2x − y = t2 .

3. Discuter et résoudre suivant la valeur du paramètre t ∈ R :

�

t x − y = 1
x + (t − 2)y = −1

. Idem avec
�

(t − 1)x + y = 1
2x + t y = −1

.
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2. Un début de généralisation

Dans l’espace (O, x , y, z), une équation linéaire est l’équation d’un plan :

ax + b y + cz = d

(on suppose ici que a, b et c ne sont pas simultanément nuls).

L’intersection de deux plans dans l’espace correspond au système suivant à 2 équations et à 3 inconnues :
�

ax + b y + cz = d
a′x + b′ y + c′z = d ′

Trois cas se présentent alors :

• les plans sont parallèles (et distincts) et il n’y a alors aucune solution au système ;

• les plans sont confondus et il y a une infinité de solutions au système ;

• les plans se coupent en une droite et il y a une infinité de solutions.

Exemple 3.

1. Le système

�

2x + 3y − 4z = 7
4x + 6y − 8z = −1

n’a pas de solution. En effet, en divisant par 2 la seconde équation,

on obtient le système équivalent :

�

2x + 3y − 4z = 7
2x + 3y − 4z = −1

2
. Les deux lignes sont clairement incompa-

tibles : aucun (x , y, z) ne peut vérifier à la fois 2x + 3y − 4z = 7 et 2x + 3y − 4z = −1
2 . L’ensemble des

solutions est donc

S =∅.

2. Pour le système

�

2x + 3y − 4z = 7
4x + 6y − 8z = 14

, les deux équations définissent le même plan ! Le système est

donc équivalent à une seule équation : 2x + 3y − 4z = 7. Si on réécrit cette équation sous la forme
z = 1

2 x + 3
4 y − 7

4 , alors on peut décrire l’ensemble des solutions sous la forme :

S =
�

(x , y,
1
2

x +
3
4

y −
7
4
) | x , y ∈ R

	

.

3. Soit le système

�

7x + 2y − 2z = 1
2x + 3y + 2z = 1

. Par substitution :

�

7x + 2y − 2z = 1
2x + 3y + 2z = 1

⇐⇒
�

z = 7
2 x + y − 1

2
2x + 3y + 2

�7
2 x + y − 1

2

�

= 1

⇐⇒
�

z = 7
2 x + y − 1

2
9x + 5y = 2

⇐⇒
�

z = 7
2 x + y − 1

2
y = −9

5 x + 2
5
⇐⇒

�

z = 17
10 x − 1

10
y = −9

5 x + 2
5

Pour décrire l’ensemble des solutions, on peut choisir x comme paramètre :

S =
§�

x ,−
9
5

x +
2
5

,
17
10

x −
1

10

�

| x ∈ R
ª

.

Géométriquement : nous avons trouvé une équation paramétrique de la droite définie par l’intersection
de deux plans.
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S

F I G U R E 1.2 – Intersection de deux plans.

Du point de vue du nombre de solutions, nous constatons qu’il n’y a que deux possibilités, à savoir aucune
solution ou une infinité de solutions.
Si on considère trois plans dans l’espace, une autre possibilité apparaît : il se peut que les trois plans
s’intersectent en un seul point.
La suite en L2. . .

3. Exercices

TD

Exercice 1
La demande de montres SLOUK est de 10 unités si le prix est égal à 160 euros et elle est de 20
unités si le prix est 120 euros. Calculer la fonction de demande supposée linéaire.

Exercice 2
Quand le prix est de 100 euros la quantité d’appareils photos de marque PISTOL offerte sur le
marché est 50 unités. Quand le prix est 50% plus élevé le nombre d’unités offertes est de 100.
Calculer la fonction d’offre supposée linéaire.

Exercice 3
Sur un marché, la demande et l’offre pour un bien sont caractérisés par :

D(p) : q = −2p+ 6

S(p) : q =
1
2

p+ 1

où p est le prix du bien et q sa quantité. Calculer la quantité d’équilibre et le prix d’équilibre.

Exercice 4
Supposons que la consommation agrégée dans une économie, notée C , soit une fonction linéaire
du revenu disponible (hors taxes), noté Y . Supposons qu’il existe un niveau de consommation
incompressible, noté C0. Il s’agit du niveau de consommation observé même si le revenu disponible
est nul. On supposera que lorsque le revenu augmente de x , la consommation en écart à son niveau
incompressible, ie C−C0, augmente de 0, 8x . Déterminer la forme de la fonction de consommation.

Exercice 5
Réorganiser les expressions en forme implicite pour les représenter sous forme explicite dans le
plan donné :
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1. a x + b y = R dans le plan (0, x , y), avec a > 0 et R> 0.

2. a x + b y ⩽ R dans le plan (0, x , y).

3. xα1
1 xα2

2 = Ū dans le plan (0, x1, x2), avec α1 > 0, α2 > 0 et Ū > 0.

4.
�

α x (σ−1)/σ
1 + (1−α) x (σ−1)/σ

2

�

σ
σ−1 = Ū dans le plan (0, x1, x2), avec 0< α < 1, σ ̸= 0, σ ̸= 1 et

Ū > 0.

Entraînement

Exercice 6
Soit un ménage disposant d’un revenu R de 100. On suppose qu’il ne peut acheter que des bananes
et des carottes et que les prix de ces deux biens sont respectivement pB = 1 et pC =

1
2 (l’unité dans

les deux cas est le kilogramme).

1. Supposons que le ménage décide de consommer la totalité de son revenu en achetant ces deux
biens (on admet qu’il ne peut pas consommer une quantité négative de banane ou de carotte).
Déterminer l’ensemble des couples de quantités (qB, qC) cohérents avec cette hypothèse.

2. Comment cet ensemble est-il modifié si le ménage décide de ne pas consommer la totalité de
son revenu ?

3. Représenter graphiquement ces deux ensembles.

Exercice 7
L’ensemble des (x , y, z) ∈ R3 tels que











x + y + z = 3

x − y + z = 1

−x + 2y + z = 4

est :

A. (1,1, 1) B. (0,1,−1) C. (0,1, 2).

Exercice 8
L’ensemble des (x , y, z) ∈ R3 tels que











x + y + z = 3

x − y + z = 1

x + z = 4

est :

A. (1,1, 1) B. vide C. (x ,−1,4− x).

Exercice 9
Soient les fonctions d’offre et de demande :

D(p) : q = a− p

S(p) : q = b+ 2p

où a et b sont des paramètres réels positifs.
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1. Interpréter les paramètres a et b.

2. Représenter graphiquement ces fonctions.

3. Déterminer sous quelle condition un prix d’équilibre p⋆ existe. Déterminer ce prix.

Auteurs du chapitre
• D’après un cours de Eva Bayer-Fluckiger, Philippe Chabloz, Lara Thomas de l’École Polytechnique

Fédérale de Lausanne,
• et un cours de Sophie Chemla de l’université Pierre et Marie Curie, reprenant des parties d’un

cours de H. Ledret et d’une équipe de l’université de Bordeaux animée par J. Queyrut,
• mixés et révisés par Arnaud Bodin, relu par Vianney Combet.
• allégé par F. Karamé.
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raisonnements

Chapitre

2

Vidéo ■ partie 1. Logique
Vidéo ■ partie 2. Raisonnements

Quelques motivations

• Il est important d’avoir un langage rigoureux. La langue française est souvent ambiguë. Prenons
l’exemple de la conjonction « ou » : au restaurant « fromage ou dessert » signifie l’un ou l’autre mais pas
les deux. Si dans un jeu de carte on cherche « les as ou les cœurs » alors il ne faut pas exclure l’as de cœur.
Autre exemple : que répondre à la question « As-tu 10 euros en poche? » si l’on dispose de 15 euros?

• Il y a des notions difficiles à expliquer avec des mots : par exemple la continuité d’une fonction est
souvent expliquée par « on trace le graphe sans lever le crayon ». Il est clair que c’est une définition peu
satisfaisante. Voici la définition mathématique de la continuité d’une fonction f : I → R en un point
x0 ∈ I :

∀ε > 0 ∃δ > 0 ∀x ∈ I (|x − x0|< δ =⇒ | f (x)− f (x0)|< ε).
C’est le but de ce chapitre de rendre cette ligne plus claire ! C’est la logique.

• Enfin les mathématiques tentent de distinguer le vrai du faux. Par exemple « Est-ce qu’une augmentation
de 20%, puis de 30% est plus intéressante qu’une augmentation de 50%? ». Vous pouvez penser « oui »
ou « non », mais pour en être sûr il faut suivre une démarche logique qui mène à la conclusion. Cette
démarche doit être convaincante pour vous mais aussi pour les autres. On parle de raisonnement.

Les mathématiques sont un langage pour s’exprimer rigoureusement, adapté aux phénomènes complexes,
qui rend les calculs exacts et vérifiables. Le raisonnement est le moyen de valider — ou d’infirmer — une
hypothèse et de l’expliquer à autrui.

1. Logique et calcul propositionnel

1.1. Quelques définitions pour commencer

• Assertion ou proposition : c’est un énoncé pouvant être vrai ou faux. Par exemple, "tout nombre premier
est impair" et "tout carré de réel est un réel positif" sont deux propositions. Il est facile de démontrer que
la première est fausse et la deuxième est vraie. Le mot proposition est clair : on propose quelque chose,
mais cela reste à démontrer.

• Axiome : c’est un énoncé supposé vrai a priori et que l’on ne cherche pas à démontrer. Ainsi, par exemple,
Euclide a énoncé cinq axiomes (« les cinq postulats d’Euclide »), qu’il a renoncé à démontrer et qui
devaient être la base de la géométrie (euclidienne). Le cinquième de ces axiomes a pour énoncé : "par

http://www.youtube.com/watch?v=aWSe1fjJHEM
http://www.youtube.com/watch?v=B-I5yZd0Wbk
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un point extérieur à une droite, il passe une et une seule droite parallèle à cette droite". Ces énoncés ont
en commun d’être « évidents » pour tout le monde. Même chose en microéconomie, pour s’accorder sur
le comportement rationnel du consommateur.

• Théorème : c’est une proposition vraie (et en tout cas démontrée comme telle). Par abus de langage, le mot
proposition désigne souvent, dans la pratique des cours de mathématiques, un théorème intermédiaire
ou de moindre importance, et même on a tendance à appeler proposition la plupart des théorèmes pour
réserver le mot théorème aux plus grands d’entre eux (théorème de Pythagore, . . . ). C’est d’ailleurs
ce dernier point de vue que nous adopterons dans les chapitres ultérieurs (mais pas dans ce premier
chapitre où le mot « proposition » aurait alors deux significations différentes).

• Corollaire : un corollaire à un théorème est un théorème qui est conséquence de ce théorème. Par
exemple, dans le chapitre « continuité », le théorème des valeurs intermédiaires dit que l’image d’un
intervalle de R par une fonction continue à valeurs réelles, est un intervalle de R. Un corollaire de ce
théorème affirme alors que si une fonction définie et continue sur un intervalle de R à valeurs réelles,
prend au moins une valeur positive et au moins une valeur négative alors cette fonction s’annule au
moins une fois dans cet intervalle.

• Lemme : c’est un théorème préparatoire à l’établissement d’un théorème de plus grande importance.

• Conjecture : une conjecture est une proposition que l’on suppose vraie sans parvenir à la démontrer.

1.2. Premiers éléments du calcul propositionnel

Définition

Une assertion ou proposition est une phrase soit vraie, soit fausse, mais pas les deux en même temps.

Exemples :

• « Il pleut. »

• « Je suis plus grand que toi. »

• « 2+ 2= 4 »

• « 2× 3= 7 »

• « Pour tout x ∈ R, on a x2 ⩾ 0. »

• « Pour tout z ∈ C, on a |z|= 1. »

On peut définir la table de vérité associée à une proposition P :

P
V
F

F I G U R E 2.1 – Table de vérité de « P »

L’équivalence ⇐⇒

On dira « P est équivalent à Q » ou « P équivaut à Q » ou « P si et seulement si Q » quand 2 propositions P et
Q prennent les mêmes valeurs de vérité.

La table de vérité est :
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P Q P ⇐⇒ Q
V V V
V F F
F V F
F F V

F I G U R E 2.2 – Table de vérité de « P ⇐⇒ Q »

La négation « non »

L’assertion « non P » ou encore « P » est vraie si P est fausse, et fausse si P est vraie.

P P
V F
F V

F I G U R E 2.3 – Table de vérité de « non P »

1.3. Les connecteurs logiques

Nous allons construire de nouvelles propositions (plus complexes) à partir de plusieurs propositions plus
simples.

L’opérateur logique « ∧ »

L’assertion « P ∧ Q » se lit en français « P et Q ».

L’assertion « P ∧ Q » est vraie si P est vraie et Q est vraie. Sinon l’assertion « P ∧ Q » est fausse.

On résume ceci en une table de vérité :

P Q P ∧Q
V V V
V F F
F V F
F F F

F I G U R E 2.4 – Table de vérité de « P ∧ Q »

Par exemple si P est l’assertion « Cette carte est un as » et Q l’assertion « Cette carte est cœur » alors l’assertion
« P ∧ Q » est vraie si la carte est l’as de cœur et fausse pour toute autre carte.

Mini-exercices.
Montrer avec des tables de vérité les propriétés suivantes :

1. Idempotence : (P ∧ P)⇔ P.

2. Commutativité : (P ∧Q)⇔ (Q ∧ P).

3. Associativité : ((P ∧Q)∧ R)⇔ (P ∧ (Q ∧ R).

4. Non contradiction : La proposition P ∧ P est fausse.
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L’opérateur logique « ∨ »

L’assertion « P ∨ Q » se lit en français « P ou Q ».

L’assertion « P ∨ Q » est vraie si l’une (au moins) des deux assertions P ou Q est vraie. L’assertion « P ∨ Q »
est fausse si les deux assertions P et Q sont fausses.

On reprend ceci dans la table de vérité :

P Q P ∨Q
V V V
V F V
F V V
F F F

F I G U R E 2.5 – Table de vérité de « P ∨ Q »

Si P est l’assertion « Cette carte est un as » et Q l’assertion « Cette carte est cœur » alors l’assertion « P ∨ Q »
est vraie si la carte est un as ou bien un cœur (en particulier elle est vraie pour l’as de cœur).

Mini-exercices.
Montrer avec des tables de vérité les propriétés suivantes :

1. Idempotence : (P ∨ P)⇔ P.

2. Commutativité : (P ∨Q)⇔ (Q ∨ P).

3. Associativité : ((P ∨Q)∨ R)⇔ (P ∨ (Q ∨ R).

4. La proposition P ∨ P est vraie.

Quelques propriétés supplémentaires (à démontrer)

La distributivité : soient trois propositions P, Q et R, on a :

1. (P ∧Q)∨ R⇔ (P ∨ R)∧ (Q ∨ R)

2. (P ∨Q)∧ R⇔ (P ∧ R)∨ (Q ∧ R)

Les lois de Morgan : soient P et Q deux propositions, on a :

1. P ∧Q⇔ P ∨Q.

2. P ∨Q⇔ P ∧Q.

1.4. L’implication

La définition mathématique est la suivante :

L’assertion « P =⇒ Q » se lit en français « P implique Q ».
Elle est équivalente à l’assertion « P ∨Q ».

Sa table de vérité est donc la suivante :
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P Q P =⇒ Q
V V V
V F F
F V V
F F V

F I G U R E 2.6 – Table de vérité de « P =⇒ Q »

Elle se lit souvent aussi « si P est vraie alors Q est vraie » ou « si P alors Q ».
On dit « P implique Q », est fausse si P est vraie et Q est fausse, la proposition P ⇒Q est vraie sinon.
Si l’implication est vraie, Q vraie peut être déduite de P vraie.
Si l’implication est vraie, on ne peut rien inférer sur la vérité de Q lorsque P est fausse.

Par exemple :

• « 0 ⩽ x ⩽ 25 =⇒
p

x ⩽ 5 » est vraie (prendre la racine carrée).

• « x ∈]−∞,−4[ =⇒ x2 + 3x − 4> 0 » est vraie (étudier le binôme).

• « sin(θ ) = 0 =⇒ θ = 0 » est fausse (regarder pour θ = 2π par exemple).

• « 2+ 2 = 5 =⇒
p

2 = 2 » est vraie ! Eh oui, si P est fausse alors l’assertion « P =⇒ Q » est toujours
vraie.

Mini-exercices.
Soient P, Q et R trois propositions. On a :

((P ⇒Q)∧ (Q⇒ R))⇒ (P ⇒ R)

Si P est vraie et si P ⇒ Q est vraie, alors Q est vraie (Cf. la première ligne de la table de vérité ??). Si
Q⇒ R est vraie, alors puisque Q est vraie on en déduit que R est vraie.

Cette propriété de transitivité sera souvent exploitée.

L’équivalence et l’implication

L’équivalence est définie à partir de l’implication comme :

« P ⇐⇒ Q » ⇐⇒ « (P =⇒ Q) ∧ (Q =⇒ P) ».

On dira « P est équivalent à Q » ou « P équivaut à Q » ou « P si et seulement si Q ». Cette assertion est vraie
lorsque P et Q sont vraies ou lorsque P et Q sont fausses.
La table de vérité est :

P Q P⇔Q P ⇒Q Q⇒ P (P ⇒Q)∧ (Q⇒ P)
V V V V V V
V F F F V F
F V F V F F
F F V V V V

Puisque les colonnes 3 et 6 ont les mêmes valeurs de vérité sur chaque ligne les propositions P⇔ Q et
(P ⇒Q)∧ (Q⇒ P) sont équivalentes, comme annoncée dans le théorème.

Exemples :

• Pour x , x ′ ∈ R, l’équivalence « x · x ′ = 0 ⇐⇒ (x = 0 ou x ′ = 0) » est vraie.

• Voici une équivalence toujours fausse (quelle que soit l’assertion P) : « P ⇐⇒ non(P) ».
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On s’intéresse davantage aux assertions vraies qu’aux fausses, aussi dans la pratique et en dehors de ce
chapitre on écrira « P ⇐⇒ Q » ou « P =⇒ Q » uniquement lorsque ce sont des assertions vraies. Par
exemple si l’on écrit « P ⇐⇒ Q » cela sous-entend « P ⇐⇒ Q est vraie ». Attention rien ne dit que P et Q
soient vraies. Cela signifie que P et Q sont vraies en même temps ou fausses en même temps.

Les lois de Morgan

Soient P et Q deux propositions. On a :

(P ⇒Q) ⇐⇒ (P ∨Q)
ainsi que :

P ⇒Q ⇐⇒ P ∧Q

Remarque : Par la loi de Morgan, on a aussi :

(P ⇒Q) ⇐⇒ P ∧Q

Ce résultat est très important, on peut exprimer l’implication à l’aide d’un connecteur logique et d’une (ou
deux) négation(s).

Mini-exercices.
Soient P et Q deux propositions. On a :

(P⇔Q) ⇐⇒
�

(P ∨Q)∧ (P ∨Q)
�

1.5. Les quantificateurs

On se donne une ensemble E et une proposition P(x) dont les valeurs de vérité dépendent des éléments
x de E (on anticipe un peu sur le chapitre suivant). Par exemple « x2 ⩾ 1 », l’assertion P(x) est vraie ou
fausse selon la valeur de x .

Le quantificateur ∀ ou « pour tout »

L’assertion

∀x ∈ E | P(x)
est une assertion vraie lorsque les assertions P(x) sont vraies pour tous les éléments x de l’ensemble E.
On lit « Pour tout x appartenant à E, P(x) », sous-entendu « Pour tout x appartenant à E, P(x) est vraie ».
Par exemple :

• « ∀x ∈ [1,+∞[ (x2 ⩾ 1) » est une assertion vraie.

• « ∀x ∈ R (x2 ⩾ 1) » est une assertion fausse.

• « ∀n ∈ N n(n+ 1) est divisible par 2 » est vraie.

Le quantificateur ∃ ou « il existe »

L’assertion

∃x ∈ E | P(x)
est une assertion vraie lorsque l’on peut trouver au moins un x de E pour lequel P(x) est vraie. On lit « il
existe x appartenant à E tel que P(x) (soit vraie) ».
Par exemple :

• « ∃x ∈ R (x(x − 1)< 0) » est vraie (par exemple x = 1
2 vérifie bien la propriété).
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• « ∃n ∈ N n2− n> n » est vraie (il y a plein de choix, par exemple n = 3 convient, mais aussi n = 10 ou
même n= 100, un seul suffit pour dire que l’assertion est vraie).

• « ∃x ∈ R (x2 = −1) » est fausse (aucun réel au carré ne donnera un nombre négatif).

La négation des quantificateurs

La négation de « ∀x ∈ E P(x) » est « ∃x ∈ E non P(x) » .

Par exemple la négation de « ∀x ∈ [1,+∞[ (x2 ⩾ 1) » est l’assertion « ∃x ∈ [1,+∞[ (x2 < 1) ». En
effet la négation de x2 ⩾ 1 est non(x2 ⩾ 1) mais s’écrit plus simplement x2 < 1.

La négation de « ∃x ∈ E P(x) » est « ∀x ∈ E non P(x) ».

Voici des exemples :

• La négation de « ∃z ∈ C (z2 + z + 1= 0) » est « ∀z ∈ C (z2 + z + 1 ̸= 0) ».

• La négation de « ∀x ∈ R (x + 1 ∈ Z) » est « ∃x ∈ R (x + 1 /∈ Z) ».

• Ce n’est pas plus difficile d’écrire la négation de phrases complexes. Pour l’assertion :

∀x ∈ R ∃y > 0 (x + y > 10)

sa négation est

∃x ∈ R ∀y > 0 (x + y ⩽ 10).

Remarques

L’ordre des quantificateurs est très important. Par exemple les deux phrases logiques

∀x ∈ R ∃y ∈ R (x + y > 0) et ∃y ∈ R ∀x ∈ R (x + y > 0).

sont différentes. La première est vraie, la seconde est fausse. En effet une phrase logique se lit de gauche à
droite, ainsi la première phrase affirme « Pour tout réel x, il existe un réel y (qui peut donc dépendre de x)
tel que x + y > 0. » (par exemple on peut prendre y = |x |+ 1). C’est donc une phrase vraie. Par contre la
deuxième se lit : « Il existe un réel y, tel que pour tout réel x, x + y > 0. » Cette phrase est fausse, cela ne
peut pas être le même y qui convient pour tous les x !
On retrouve la même différence dans les phrases en français suivantes. Voici une phrase vraie « Pour toute
personne, il existe un numéro de téléphone », bien sûr le numéro dépend de la personne. Par contre cette
phrase est fausse : « Il existe un numéro, pour toutes les personnes ». Ce serait le même numéro pour tout le
monde !

Terminons avec d’autres remarques.

• Quand on écrit « ∃x ∈ R ( f (x) = 0) » cela signifie juste qu’il existe un réel pour lequel f s’annule. Rien
ne dit que ce x est unique. Dans un premier temps vous pouvez lire la phrase ainsi : « il existe au moins
un réel x tel que f (x) = 0 ». Afin de préciser que f s’annule en une unique valeur, on rajoute un point
d’exclamation :

∃! x ∈ R ( f (x) = 0).

• Pour la négation d’une phrase logique, il n’est pas nécessaire de savoir si la phrase est fausse ou vraie.
Le procédé est algorithmique : on change le « pour tout » en « il existe » et inversement, puis on prend la
négation de l’assertion P.

• Pour la négation d’une proposition, il faut être précis : la négation de l’inégalité stricte «< » est l’inégalité
large « ⩾ », et inversement.



LOGIQUE ET RAISONNEMENTS 2. RAISONNEMENTS 16

• Les quantificateurs ne sont pas des abréviations. Soit vous écrivez une phrase en français : « Pour tout
réel x, si f (x) = 1 alors x ⩾ 0. » , soit vous écrivez la phrase logique :

∀x ∈ R ( f (x) = 1 =⇒ x ⩾ 0).

Mais surtout n’écrivez pas « ∀x réel, si f (x) = 1 =⇒ x positif ou nul ». Enfin, pour passer d’une ligne à
l’autre d’un raisonnement, préférez plutôt « donc » à « =⇒ ».

• Il est défendu d’écrire ̸ ∃,≠⇒ . Ces symboles n’existent pas !

Mini-exercices.

1. Écrire la table de vérité du « ou exclusif ». (C’est le ou dans la phrase « fromage ou dessert », l’un ou
l’autre mais pas les deux.)

2. Écrire la table de vérité de « non (P et Q) ». Que remarquez vous?

3. Écrire la négation de « P =⇒ Q ».

4. Écrire la négation de «
�

P et (Q ou R)
�

».

5. Écrire à l’aide des quantificateurs la phrase suivante : « Pour tout nombre réel, son carré est positif ».
Puis écrire la négation.

6. Mêmes questions avec les phrases : « Pour chaque réel, je peux trouver un entier relatif tel que leur
produit soit strictement plus grand que 1 ». Puis « Pour tout entier n, il existe un unique réel x tel que
exp(x) égale n ».

2. Raisonnements

Voici des méthodes classiques de raisonnements.

2.1. Raisonnement direct ou déductif

On veut montrer que l’assertion « P =⇒ Q » est vraie. On suppose que P est vraie et on montre qu’alors Q
est vraie. C’est la méthode à laquelle vous êtes le plus habitué. Elle provient de la première ligne de la
table de vérité de l’implication.

Exemple 1.
Montrer que si a, b ∈Q alors a+ b ∈Q.

Démonstration. Prenons a ∈Q, b ∈Q. Rappelons que les rationnels Q sont l’ensemble des réels s’écrivant
p
q avec p ∈ Z et q ∈ N∗.

Alors a = p
q pour un certain p ∈ Z et un certain q ∈ N∗. De même b = p′

q′ avec p′ ∈ Z et q′ ∈ N∗. Maintenant

a+ b =
p
q
+

p′

q′
=

pq′ + qp′

qq′
.

Or le numérateur pq′ + qp′ est bien un élément de Z ; le dénominateur qq′ est lui un élément de N∗. Donc
a+ b s’écrit bien de la forme a+ b = p′′

q′′ avec p′′ ∈ Z, q′′ ∈ N∗. Ainsi a+ b ∈Q.
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2.2. Au cas par cas

Si l’on souhaite vérifier une assertion P(x) pour tous les x dans un ensemble E, on montre l’assertion pour
les x dans une partie A de E, puis pour les x n’appartenant pas à A. C’est la méthode de disjonction ou du
cas par cas.

Exemple 2.
Montrer que pour tout x ∈ R, |x − 1|⩽ x2 − x + 1.

Démonstration. Soit x ∈ R. Nous distinguons deux cas.
Premier cas : x ⩾ 1. Alors |x − 1|= x − 1. Calculons alors x2 − x + 1− |x − 1|.

x2 − x + 1− |x − 1|= x2 − x + 1− (x − 1)

= x2 − 2x + 2

= (x − 1)2 + 1 ⩾ 0.

Ainsi x2 − x + 1− |x − 1|⩾ 0 et donc x2 − x + 1 ⩾ |x − 1|.
Deuxième cas : x < 1. Alors |x−1| = −(x−1). Nous obtenons x2−x+1−|x−1| = x2−x+1+(x−1) = x2 ⩾ 0.
Et donc x2 − x + 1 ⩾ |x − 1|.
Conclusion. Dans tous les cas |x − 1|⩽ x2 − x + 1.

2.3. Par contre-exemple

Si l’on veut montrer qu’une assertion du type « ∀x ∈ E P(x) » est vraie alors pour chaque x de E il faut
montrer que P(x) est vraie.
A l’inverse, pour montrer que cette assertion est fausse, il suffit de trouver x ∈ E tel que P(x) soit fausse
(rappel : la négation de « ∀x ∈ E P(x) » est « ∃x ∈ E non P(x) »).
Trouver un tel x , c’est trouver un contre-exemple à l’assertion « ∀x ∈ E P(x) ».

Exemple 3.
Montrer que l’assertion suivante est fausse « Tout entier positif est somme de trois carrés ».
(Les carrés sont les 02, 12, 22, 32,... Par exemple 6= 22 + 12 + 12.)

Démonstration. Un contre-exemple est 7 : les carrés inférieurs à 7 sont 0, 1, 4 mais avec trois de ces nombres
on ne peut faire 7.

2.4. Par contraposée

Le raisonnement par contraposition est basé sur l’équivalence suivante :

« P =⇒ Q » ⇐⇒ « Q =⇒ P ».

Donc si l’on souhaite montrer l’assertion « P =⇒ Q », on peut aussi montrer que si non(Q) est vraie alors
non(P) est vraie.

Exemple 4.
Soit n ∈ N. Montrer que si n2 est pair alors n est pair.
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Démonstration. Nous supposons que n n’est pas pair. Nous voulons montrer qu’alors n2 n’est pas pair. Comme
n n’est pas pair, il est impair et donc il existe k ∈ N tel que n = 2k+1. Alors n2 = (2k+1)2 = 4k2+4k+1 = 2ℓ+1
avec ℓ= 2k2 + 2k ∈ N. Et donc n2 est impair.
Conclusion : nous avons montré que si n est impair alors n2 est impair. Par contraposition ceci est équivalent
à : si n2 est pair alors n est pair.

2.5. Par l’absurde

Le raisonnement par l’absurde pour montrer « P =⇒ Q » repose sur le principe suivant : on suppose à la
fois que P est vraie et que Q est fausse et on cherche une contradiction.
On s’appuie sur la troisième ligne du tableau de vérité de l’implication.
Ainsi si P est vraie et « P =⇒ Q » est vraie, alors Q doit être vraie.

Exemple 5.

Soient a, b ⩾ 0. Montrer que si
a

1+ b
=

b
1+ a

alors a = b.

Démonstration. Nous raisonnons par l’absurde en supposant que a
1+b =

b
1+a et a ̸= b. Comme a

1+b =
b

1+a
alors a(1+a) = b(1+ b) donc a+a2 = b+ b2 d’où a2− b2 = b−a. Cela conduit à (a− b)(a+ b) = −(a− b).
Comme a ̸= b alors a − b ̸= 0 et donc en divisant par a − b on obtient a + b = −1. La somme des deux
nombres positifs a et b ne peut être négative. Nous obtenons une contradiction.

Conclusion : si
a

1+ b
=

b
1+ a

alors a = b.

Dans la pratique, on peut choisir indifféremment entre un raisonnement par contraposition ou par l’absurde.
Attention cependant de bien préciser quel type de raisonnement vous choisissez et surtout de ne pas changer
en cours de rédaction !

2.6. Par récurrence

Le principe de récurrence permet de montrer qu’une assertion P(n), dépendant de n, est vraie pour tout
n ∈ N. La démonstration par récurrence se déroule en trois étapes : lors de l’initialisation on prouve P(0).
Pour l’étape d’hérédité, on suppose n ⩾ 0 donné avec P(n) vraie, et on démontre alors que l’assertion
P(n+ 1) au rang suivant est vraie. Enfin dans la conclusion, on rappelle que par le principe de récurrence
P(n) est vraie pour tout n ∈ N.
Cette méthode est fondée sur la première ligne du tableau de vérité de l’implication.

Exemple 6.
Montrer que pour tout n ∈ N, 2n > n.

Démonstration. Pour n ⩾ 0, notons P(n) l’assertion suivante :

2n > n.

Nous allons démontrer par récurrence que P(n) est vraie pour tout n ⩾ 0.
Initialisation. Pour n= 0 nous avons 20 = 1> 0. Donc P(0) est vraie.
Hérédité. Fixons n ⩾ 0. Supposons que P(n) soit vraie. Nous allons montrer que P(n+ 1) : 2n+1 > n+ 1 est
vraie.

2n+1 = 2× 2n = 2n + 2n > 2n + n par P(n) vraie

> n+ 1 car 2n ⩾ 1.
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Donc P(n+ 1) est vraie.
Conclusion : par le principe de récurrence, P(n) : 2n > n est vraie pour tout n ⩾ 0.

Remarques :

• La rédaction d’une récurrence est assez rigide. Respectez scrupuleusement la rédaction proposée : donnez
un nom à l’assertion que vous souhaitez montrer (ici P(n)), respectez les trois étapes (même si souvent
l’étape d’initialisation est très facile). En particulier méditez et conservez la première ligne de l’hérédité
« Fixons n ⩾ 0. Supposons que P(n) soit vraie. Nous allons montrer que P(n+ 1) est vraie. »

• Si on doit démontrer qu’une propriété est vraie pour tout n ⩾ n0, alors on commence l’initialisation au
rang n0.

• Le principe de récurrence est basé sur la construction de l’ensemble N. En effet un des axiomes pour
définir N est le suivant : « Soit A une partie de N qui contient 0 et telle que si n ∈ A alors n+ 1 ∈ A. Alors
A= N ».

Mini-exercices.

1. (Raisonnement direct) Soient a, b ∈ R+. Montrer que si a ⩽ b alors a ⩽ a+b
2 ⩽ b et a ⩽

p
ab ⩽ b.

2. (Cas par cas) Montrer que pour tout n ∈ N, n(n+ 1) est divisible par 2 (distinguer les n pairs des n
impairs).

3. (Contraposée ou absurde) Soient a, b ∈ Z. Montrer que si b ̸= 0 alors a+ b
p

2 /∈Q. (On utilisera quep
2 /∈Q.)

4. (Absurde) Soit n ∈ N∗. Montrer que
p

n2 + 1 n’est pas un entier.

5. (Contre-exemple) Est-ce que pour tout x ∈ R on a x < 2 =⇒ x2 < 4?

6. (Récurrence) Montrer que pour tout n ⩾ 1, 1+ 2+ · · ·+ n= n(n+1)
2 .

7. (Récurrence) Fixons un réel x ⩾ 0. Montrer que pour tout entier n ⩾ 1, (1+ x)n ⩾ 1+ nx .

3. Exercices

TD

Exercice 10 Soit une proposition P. Montrer, à l’aide d’un tableau de vérité, que P ∧ P⇔ P et
P ∨ P⇔ P.

Exercice 11
Soient P, Q et R trois propositions. Montrer, à l’aide d’un tableau de vérité, que :

1. P ∧Q⇔Q ∧ P

2. P ∨Q⇔Q ∨ P

3. (P ∧Q)∧ R⇔ P ∧ (Q ∧ R)

4. (P ∨Q)∨ R⇔ P ∨ (Q ∨ R)

5. (P ∧Q)∨ R⇔ (P ∨ R)∧ (Q ∨ R)

6. (P ∨Q)∧ R⇔ (P ∧ R)∨ (Q ∧ R)
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Exercice 12
Soient P, Q et R trois propositions. Montrer la transitivité de l’implication logique, c’est-à-dire que :

((P ⇒Q)∧ (Q⇒ R))⇒ (P ⇒ R)

Exercice 13
Soient P et Q deux propositions. Exprimer l’équivalence logique en termes d’implication logique,
en établissant que :

(P⇔Q)⇔ (P ⇒Q)∧ (Q⇒ P)

Exercice 14
Montrer que l’implication logique suivante :

(10n + 1 est divisible par 9)⇒ (10n+1 + 1 est divisible par 9)

est vraie, avec n ∈ N. Que pensez vous de ces propositions ?

Exercice 15
Montrer les propositions suivantes par récurrence :

1.
∑n

i=1 i = n(n+1)
2 .

2.
∑n

i=1 i2 = n(n+1)(2n+1)
6 .

3.
∑n

i=1 x i−1 = 1−xn

1−x , avec x un réel différent de 1.

Entraînement

Exercice 16
Soient P, Q et R trois propositions, et P la proposition contraire de P. Montrer, à l’aide d’un tableau
de vérité, que :

1. P ∧Q⇔ P ∨Q

2. P ∨Q⇔ P ∧Q

3. (P ⇒Q)⇔ (P ∨Q).

4. (P ⇒Q)⇔ (P ∧Q).

5. (P ⇒Q)⇔ (Q⇒ P).

Exercice 17
Montrer par récurrence :

1.
∑n

i=2
1

(i−1)i = 1− 1
n .

2.
∑n

k=1
1

k(k+1) =
n

n+1

3.
∑n

k=1 (2k− 1) = n2

4.
∑n

k=1 k3 = n2(n+1)2

4

5.
∑n

i=1 i(i + 1) = n(n+1)(n+2)
3
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Motivations

Heureusement, vous connaissez déjà quelques ensembles :

• l’ensemble des entiers naturels N= {0, 1,2, 3, . . .}.
• l’ensemble des entiers relatifs Z= {. . . ,−2,−1,0, 1,2, . . .}.
• l’ensemble des rationnels Q=

� p
q | p ∈ Z, q ∈ N \ {0}

	

.

• l’ensemble des réels R, par exemple 1,
p

2, π, ln(2),. . .

• l’ensemble des nombres complexes C.

Nous allons essayer de voir les propriétés des ensembles, sans s’attacher à un exemple particulier. Vous
vous apercevrez assez rapidement que ce qui est au moins aussi important que les ensembles, ce sont les
relations entre ensembles : ce sera la notion d’application (ou fonction) entre deux ensembles.

1. Ensembles

1.1. Définir des ensembles

• On va définir informellement ce qu’est un ensemble : un ensemble est une collection d’éléments.

• Exemples :

{0,1}, {rouge,noir}, {0,1, 2,3, . . .}= N.

• Un ensemble particulier est l’ensemble vide, noté ∅ qui est l’ensemble ne contenant aucun élément.

• On note
x ∈ E

si x est un élément de E, et x /∈ E dans le cas contraire.

• Voici une autre façon de définir des ensembles : une collection d’éléments qui vérifient une propriété.

• Exemples :
�

x ∈ R | |x − 2|< 1
	

,
�

z ∈ C | z5 = 1
	

,
�

x ∈ R | 0 ⩽ x ⩽ 1
	

= [0,1].

1.2. Inclusion, union, intersection, complémentaire

• L’inclusion. E ⊂ F si tout élément de E est aussi un élément de F . Autrement dit : ∀x ∈ E (x ∈ F). On
dit alors que E est un sous-ensemble de F ou une partie de F .

• L’égalité. E = F si et seulement si E ⊂ F et F ⊂ E.

• Ensemble des parties de E. On note P (E) l’ensemble des parties de E. Par exemple si E = {1, 2,3} :

P ({1, 2,3}) =
�

∅, {1}, {2}, {3}, {1,2}, {1,3}, {2, 3}, {1, 2,3}
	

.
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• Complémentaire. Si A⊂ E,

∁EA=
�

x ∈ E | x /∈ A
	

On le note aussi E \ A et juste ∁A s’il n’y a pas d’ambiguïté (et parfois aussi Ac ou A).

A ∁EAE

• Union. Pour A, B ⊂ E,

A∪ B =
�

x ∈ E | x ∈ A ou x ∈ B
	

Le « ou » n’est pas exclusif : x peut appartenir à A et à B en même temps.

A BA∪ B

• Intersection.

A∩ B =
�

x ∈ E | x ∈ A et x ∈ B
	

A BA∩ B

1.3. Règles de calculs

Soient A, B, C des parties d’un ensemble E.

• A∩ B = B ∩ A
• A∩ (B ∩ C) = (A∩ B)∩ C (on peut donc écrire A∩ B ∩ C sans ambigüité)

• A∩∅=∅, A∩ A= A, A⊂ B⇐⇒ A∩ B = A
• A∪ B = B ∪ A
• A∪ (B ∪ C) = (A∪ B)∪ C (on peut donc écrire A∪ B ∪ C sans ambiguïté)

• A∪∅= A, A∪ A= A, A⊂ B⇐⇒ A∪ B = B
• A∩ (B ∪ C) = (A∩ B)∪ (A∩ C)
• A∪ (B ∩ C) = (A∪ B)∩ (A∪ C)
• ∁

�

∁A
�

= A et donc A⊂ B⇐⇒ ∁B ⊂ ∁A
• ∁ (A∩ B) = ∁A∪ ∁B
• ∁ (A∪ B) = ∁A∩ ∁B

Voici les dessins pour les deux dernières assertions.

A B

∁A

A B

∁B
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A BA∩ B

∁(A∩ B) = ∁A∪ ∁B

A BA∪ B

∁(A∪ B) = ∁A∩ ∁B

Les preuves sont pour l’essentiel une reformulation des opérateurs logiques, en voici quelques-unes :

• Preuve de A∩ (B∪C) = (A∩B)∪ (A∩C) : x ∈ A∩ (B∪C) ⇐⇒ x ∈ A et x ∈ (B∪C) ⇐⇒ x ∈ A et (x ∈
B ou x ∈ C) ⇐⇒ (x ∈ A et x ∈ B) ou (x ∈ A et x ∈ C) ⇐⇒ (x ∈ A∩ B) ou (x ∈ A∩ C) ⇐⇒ x ∈
(A∩ B)∪ (A∩ C).

• Preuve de ∁ (A∩ B) = ∁A∪ ∁B : x ∈ ∁ (A∩ B) ⇐⇒ x /∈ (A∩ B) ⇐⇒ non
�

x ∈ A∩ B
�

⇐⇒ non
�

x ∈
A et x ∈ B

�

⇐⇒ non(x ∈ A) ou non(x ∈ B) ⇐⇒ x /∈ A ou x /∈ B ⇐⇒ x ∈ ∁A∪ ∁B.
Remarquez que l’on repasse aux éléments pour les preuves.

1.4. Produit cartésien

Soient E et F deux ensembles. Le produit cartésien, noté E × F , est l’ensemble des couples (x , y) où x ∈ E
et y ∈ F .

Exemple 1.

1. Vous connaissez R2 = R×R=
�

(x , y) | x , y ∈ R
	

.

2. Autre exemple [0, 1]×R=
�

(x , y) | 0 ⩽ x ⩽ 1, y ∈ R
	

x

y

0 1

3. [0,1]× [0,1]× [0, 1] =
�

(x , y, z) | 0 ⩽ x , y, z ⩽ 1
	

x

y

z

0 1

1
1

Mini-exercices.

1. En utilisant les définitions, montrer : A ̸= B si et seulement s’il existe a ∈ A\ B ou b ∈ B \ A.

2. Énumérer P ({1, 2,3, 4}).

3. Montrer A∪ (B ∩ C) = (A∪ B)∩ (A∪ C) et ∁ (A∪ B) = ∁A∩ ∁B.

4. Énumérer {1, 2,3} × {1, 2,3, 4}.

5. Représenter les sous-ensembles de R2 suivants :
�

]0, 1[∪[2, 3[
�

× [−1, 1],
�

R \ (]0, 1[∪[2, 3[)
�

×
�

(R \
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[−1, 1])∩ [0,2]
�

.

1.5. Cardinal

Définition 1.
Un ensemble E est fini s’il existe un entier n ∈ N et une bijection de E vers {1, 2, . . . , n}. Cet entier n est
unique et s’appelle le cardinal de E (ou le nombre d’éléments) et est noté Card E.

Quelques exemples :

1. E = {rouge,noir} est en bijection avec {1,2} et donc est de cardinal 2.

2. N n’est pas un ensemble fini.

3. Par définition le cardinal de l’ensemble vide est 0.

Enfin quelques propriétés :

1. Si A est un ensemble fini et B ⊂ A alors B est aussi un ensemble fini et Card B ⩽ Card A.

2. Si A, B sont des ensembles finis disjoints (c’est-à-dire A∩ B =∅) alors Card(A∪ B) = Card A+Card B.

3. Si A est un ensemble fini et B ⊂ A alors Card(A \ B) = Card A− Card B. En particulier si B ⊂ A et
Card A= Card B alors A= B.

4. Pour A, B deux ensembles finis quelconques :

Card(A∪ B) = Card A+Card B −Card(A∩ B)

Voici une situation où s’applique la dernière propriété :

B

A

La preuve de la dernière propriété utilise la décomposition

A∪ B = A∪
�

B \ (A∩ B)
�

Les ensembles A et B \ (A∩ B) sont disjoints, donc

Card(A∪ B) = Card A+Card
�

B \ (A∩ B)
�

= Card A+Card B −Card(A∩ B)

par la propriété 2, puis la propriété 3.

Cette formule se généralise. Ainsi pour 3 ensembles A, B et C :

Card(A∪ B ∪ C) = Card A+Card B +Card C −Card(A∩ B)−Card(A∩ C)−Card(B ∩ C) +Card(A∩ B ∩ C)

5. Enfin, pour le produit cartésien de deux ensembles finis A et B :

Card(A× B) = Card A×Card B

La formule se généralise également.

Savoir compter les éléments d’un ensemble sera très utile pour faire du dénombrement puis calculer
des probabilités.
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2. Applications

2.1. Définitions

• Une application (ou relation binaire ou fonction) f : E → F , c’est la donnée pour chaque élément
x ∈ E d’un unique élément de F noté f (x).
Nous représenterons les applications par deux types d’illustrations : les ensembles « patates » ou dia-
gramme de Venn, l’ensemble de départ (et celui d’arrivée) est schématisé par un ovale ses éléments par
des points. L’association x 7→ f (x) est représentée par une flèche.

x f (x)

E F

f

L’autre représentation est celle des fonctions continues de R dans R (ou des sous-ensembles de R).
L’ensemble de départ R est représenté par l’axe des abscisses et celui d’arrivée par l’axe des ordonnées.
L’association x 7→ f (x) est représentée par le point (x , f (x)).

x

y

x

f (x)

Exemple 2.
Par exemple, ici est-on en présence d’une fonction ?

E F

x1
x2

x3

x4

y1

y2

y3

y4

Ceci n’est pas une fonction, car x1 a deux images (y1 et y4)

• Égalité. Deux applications f , g : E→ F sont égales si et seulement si pour tout x ∈ E, f (x) = g(x). On
note alors f = g.

• Le graphe de f : E→ F est

Γ f =
¦

�

x , f (x)
�

∈ E × F | x ∈ E
©

x

y

Γ f

• Composition. Soient f : E → F et g : F → G alors g ◦ f : E → G est l’application définie par
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g ◦ f (x) = g
�

f (x)
�

.

E F G

f g

g ◦ f

• Restriction. Soient f : E→ F et A⊂ E alors la restriction de f à A est l’application

f|A : A −→ F
x 7−→ f (x)

Exemple 3.

1. L’identité, idE : E→ E est simplement définie par x 7→ x et sera très utile dans la suite.

2. Définissons f , g ainsi

f : ]0,+∞[ −→ ]0,+∞[
x 7−→ 1

x

g : ]0,+∞[ −→ R
x 7−→ x−1

x+1
.

Alors g ◦ f : ]0,+∞[→ R vérifie pour tout x ∈]0,+∞[ :

g ◦ f (x) = g
�

f (x)
�

= g
�

1
x

�

=
1
x − 1
1
x + 1

=
1− x
1+ x

= −g(x).

2.2. Image directe, image réciproque

Soient E, F deux ensembles.

Définition 2.
Soit A⊂ E et f : E→ F , l’image directe de A par f est l’ensemble

f (A) =
�

f (x) | x ∈ A
	

E F

A f (A)

f

x

y

A

f (A)

Définition 3.
Soit B ⊂ F et f : E→ F , l’image réciproque de B par f est l’ensemble

f −1(B) =
�

x ∈ E | f (x) ∈ B
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E F

f −1(B)

B

f

x

y

B

f −1(B)

Remarque.
Ces notions sont plus difficiles à maîtriser qu’il n’y paraît !

• f (A) est un sous-ensemble de F , f −1(B) est un sous-ensemble de E.

• La notation « f −1(B) » est un tout, rien ne dit que f est une fonction bijective (voir plus loin). L’image
réciproque existe quelque soit la fonction.

• L’image directe d’un singleton f ({x}) =
�

f (x)
	

est un singleton. Par contre l’image réciproque d’un
singleton f −1

�

{y}
�

dépend de f . Cela peut être un singleton, un ensemble à plusieurs éléments ; mais
cela peut-être E tout entier (si f est une fonction constante) ou même l’ensemble vide (si aucune image
par f ne vaut y).

2.3. Antécédents

Fixons y ∈ F . Tout élément x ∈ E tel que f (x) = y est un antécédent de y .
En termes d’image réciproque l’ensemble des antécédents de y est f −1({y}).

Sur les dessins suivants, l’élément y admet 3 antécédents par f . Ce sont x1, x2, x3.

E F

f

y
x1 x2

x3

x

y

x1 x2 x3

y

Mini-exercices.

1. Pour deux applications f , g : E→ F , quelle est la négation de f = g ?

2. Représenter le graphe de f : N→ R définie par n 7→ 4
n+1 .

3. Soient f , g, h : R→ R définies par f (x) = x2, g(x) = 2x + 1, h(x) = x3 − 1. Calculer f ◦ (g ◦ h) et
( f ◦ g) ◦ h.

4. Pour la fonction f : R→ R définie par x 7→ x2 représenter et calculer les ensembles suivants : f ([0, 1[),
f (R), f (]− 1,2[), f −1([1,2[), f −1([−1, 1]), f −1({3}), f −1(R \N).
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3. Injection, surjection, bijection

3.1. Injection, surjection

Soit E, F deux ensembles et f : E→ F une application.

Définition 4.
f est injective si pour tout x , x ′ ∈ E avec f (x) = f (x ′) alors x = x ′. Autrement dit :

∀x , x ′ ∈ E
�

f (x) = f (x ′) =⇒ x = x ′
�

E F

x1
x2

x4

y1

y2

y3

y4

Ceci est une injection, f (yi) = f (y j)⇒ x i = x j .

Définition 5.
f est surjective si pour tout y ∈ F , il existe x ∈ E tel que y = f (x). Autrement dit :

∀y ∈ F ∃x ∈ E
�

y = f (x)
�

E F

x1
x2

x3

x4

y1

y2

y3

Ceci est une surjection, tout élément de F a un antécédant dans E

Une autre formulation : f est surjective si et seulement si f (E) = F .

Les applications f représentées sont injectives :

E F

f

x

y

E

F
)

Les applications f représentées sont surjectives :
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E F

f

x

y

E

F

Remarque.
Encore une fois ce sont des notions difficiles à appréhender. Une autre façon de formuler l’injectivité et la
surjectivité est d’utiliser les antécédents.

• f est injective si et seulement si tout élément y de F a au plus un antécédent (et éventuellement aucun).

• f est surjective si et seulement si tout élément y de F a au moins un antécédent.

Remarque.
Voici deux fonctions non injectives :

E F

f

yx x ′

x

y

x x ′

y

Ainsi que deux fonctions non surjectives :

E F

f

x

y

E

F

)y

Exemple 4.

1. Soit f1 : N → Q définie par f1(x) =
1

1+x . Montrons que f1 est injective : soit x , x ′ ∈ N tels que
f1(x) = f1(x ′). Alors 1

1+x =
1

1+x ′ , donc 1+ x = 1+ x ′ et donc x = x ′. Ainsi f1 est injective.

Par contre f1 n’est pas surjective. Il s’agit de trouver un élément y qui n’a pas d’antécédent par f1. Ici il
est facile de voir que l’on a toujours f1(x)⩽ 1 et donc par exemple y = 2 n’a pas d’antécédent. Ainsi f1
n’est pas surjective.

2. Soit f2 : Z→ N définie par f2(x) = x2. Alors f2 n’est pas injective. En effet on peut trouver deux éléments
x , x ′ ∈ Z différents tels que f2(x) = f2(x ′). Il suffit de prendre par exemple x = 2, x ′ = −2.

f2 n’est pas non plus surjective, en effet il existe des éléments y ∈ N qui n’ont aucun antécédent. Par
exemple y = 3 : si y = 3 avait un antécédent x par f2, nous aurions f2(x) = y, c’est-à-dire x2 = 3,
d’où x = ±

p
3. Mais alors x n’est pas un entier de Z. Donc y = 3 n’a pas d’antécédent et f2 n’est pas

surjective.
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3.2. Bijection

Définition 6.
f est bijective si elle injective et surjective. Cela équivaut à : pour tout y ∈ F il existe un unique x ∈ E
tel que y = f (x). Autrement dit :

∀y ∈ F ∃!x ∈ E
�

y = f (x)
�

E F

x1
x2

x3

x4

y1

y2

y3

y4

Ceci est une bijection. Notons qu’il s’agit du seul cas où on peut imaginer sans équivoque une fonction
qui nous amène de F vers E.

L’existence du x vient de la surjectivité et l’unicité de l’injectivité. Autrement dit, tout élément de F a un
unique antécédent par f .

E F

f

x

y

E

F

Proposition 1.
Soit E, F des ensembles et f : E→ F une application.

1. L’application f est bijective si et seulement si il existe une application g : F → E telle que f ◦ g = idF et
g ◦ f = idE .

2. Si f est bijective alors l’application g est unique et elle aussi est bijective. L’application g s’appelle la
bijection réciproque de f et est notée f −1. De plus

�

f −1
�−1
= f .

Remarque.

• f ◦ g = idF se reformule ainsi

∀y ∈ F f
�

g(y)
�

= y.

• Alors que g ◦ f = idE s’écrit :

∀x ∈ E g
�

f (x)
�

= x .

• Par exemple f : R →]0,+∞[ définie par f (x) = exp(x) est bijective, sa bijection réciproque est
g :]0,+∞[→ R définie par g(y) = ln(y). Nous avons bien exp

�

ln(y)
�

= y , pour tout y ∈]0,+∞[ et
ln
�

exp(x)
�

= x , pour tout x ∈ R.

Démonstration.

1. • Sens ⇒. Supposons f bijective. Nous allons construire une application g : F → E. Comme f est
surjective alors pour chaque y ∈ F , il existe un x ∈ E tel que y = f (x) et on pose g(y) = x . On
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a f
�

g(y)
�

= f (x) = y, ceci pour tout y ∈ F et donc f ◦ g = idF . On compose à droite avec f
donc f ◦ g ◦ f = idF ◦ f . Alors pour tout x ∈ E on a f

�

g ◦ f (x)
�

= f (x) or f est injective et donc
g ◦ f (x) = x . Ainsi g ◦ f = idE . Bilan : f ◦ g = idF et g ◦ f = idE .

• Sens⇐. Supposons que g existe et montrons que f est bijective.
— f est surjective : en effet soit y ∈ F alors on note x = g(y) ∈ E ; on a bien : f (x) = f

�

g(y)
�

=
f ◦ g(y) = idF (y) = y , donc f est bien surjective.

— f est injective : soient x , x ′ ∈ E tels que f (x) = f (x ′). On compose par g (à gauche) alors
g ◦ f (x) = g ◦ f (x ′) donc idE(x) = idE(x ′) donc x = x ′ ; f est bien injective.

2. • Si f est bijective alors g est aussi bijective car g ◦ f = idE et f ◦ g = idF et on applique ce que l’on
vient de démontrer avec g à la place de f . Ainsi g−1 = f .

• Si f est bijective, g est unique : en effet soit h : F → E une autre application telle que h ◦ f = idE et
f ◦ h = idF ; en particulier f ◦ h = idF = f ◦ g, donc pour tout y ∈ F , f

�

h(y)
�

= f
�

g(y)
�

or f est
injective alors h(y) = g(y), ceci pour tout y ∈ F ; d’où h= g.

Proposition 2.
Soient f : E → F et g : F → G des applications bijectives. L’application g ◦ f est bijective et sa bijection
réciproque est

(g ◦ f )−1 = f −1 ◦ g−1

Démonstration. D’après la proposition 1, il existe u : F → E tel que u ◦ f = idE et f ◦ u = idF . Il existe aussi
v : G→ F tel que v◦ g = idF et g ◦v = idG . On a alors (g ◦ f )◦(u◦v) = g ◦( f ◦u)◦v = g ◦idF ◦v = g ◦v = idE .
Et (u ◦ v) ◦ (g ◦ f ) = u ◦ (v ◦ g) ◦ f = u ◦ idF ◦ f = u ◦ f = idE . Donc g ◦ f est bijective et son inverse est u ◦ v.
Comme u est la bijection réciproque de f et v celle de g alors : u ◦ v = f −1 ◦ g−1.

Mini-exercices.

1. Les fonctions suivantes sont-elles injectives, surjectives, bijectives ?

• f1 : R→ [0,+∞[, x 7→ x2.

• f2 : [0,+∞[→ [0,+∞[, x 7→ x2.

• f3 : N→ N, x 7→ x2.

• f4 : Z→ Z, x 7→ x − 7.

• f5 : R→ [0,+∞[, x 7→ |x |.

2. Montrer que la fonction f : ]1,+∞[→]0,+∞[ définie par f (x) = 1
x−1 est bijective. Calculer sa

bijection réciproque.

4. Bases du dénombrement (facultatif)

4.1. Injection, surjection, bijection et ensembles finis

Proposition 3.
Soit E, F deux ensembles finis et f : E→ F une application.

1. Si f est injective alors Card E ⩽ Card F.

2. Si f est surjective alors Card E ⩾ Card F.

3. Si f est bijective alors Card E = Card F.

Démonstration.
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1. Supposons f injective. Notons F ′ = f (E) ⊂ F alors la restriction f| : E→ F ′ (définie par f|(x) = f (x))
est une bijection. Donc pour chaque y ∈ F ′ est associé un unique x ∈ E tel que y = f (x). Donc E et F ′

ont le même nombre d’éléments. Donc Card F ′ = Card E. Or F ′ ⊂ F , ainsi Card E = Card F ′ ⩽ Card F .

2. Supposons f surjective. Pour tout élément y ∈ F , il existe au moins un élément x de E tel que y = f (x)
et donc Card E ⩾ Card F .

3. Cela découle de (1) et (2) (ou aussi de la preuve du (1)).

Proposition 4.
Soit E, F deux ensembles finis et f : E→ F une application. Si

Card E = Card F

alors les assertions suivantes sont équivalentes :

i. f est injective,

ii. f est surjective,

iii. f est bijective.

Démonstration. Le schéma de la preuve est le suivant : nous allons montrer successivement les implications :

(i) =⇒ (ii) =⇒ (iii) =⇒ (i)

ce qui prouvera bien toutes les équivalences.

• (i) =⇒ (ii). Supposons f injective. Alors Card f (E) = Card E = Card F . Ainsi f (E) est un sous-ensemble
de F ayant le même cardinal que F ; cela entraîne f (E) = F et donc f est surjective.

• (ii) =⇒ (iii). Supposons f surjective. Pour montrer que f est bijective, il reste à montrer que f est
injective. Raisonnons par l’absurde et supposons f non injective. Alors Card f (E) < Card E (car au
moins 2 éléments ont la même image). Or f (E) = F car f surjective, donc Card F < Card E. C’est une
contradiction, donc f doit être injective et ainsi f est bijective.

• (iii) =⇒ (i). C’est clair : une fonction bijective est en particulier injective.

Appliquez ceci pour montrer le principe des tiroirs :

Proposition 5.
Si l’on range dans k tiroirs, n> k paires de chaussettes alors il existe (au moins) un tiroir contenant (au
moins) deux paires de chaussettes.

Malgré sa formulation amusante, c’est une proposition souvent utile. Exemple : dans un amphi de 400
étudiants, il y a au moins deux étudiants nés le même jour !

4.2. Nombres d’applications

Soient E, F des ensembles finis, non vides. On note Card E = n et Card F = p.

Proposition 6.
Le nombre d’applications différentes de E dans F est :

pn

Autrement dit c’est (Card F)Card E .
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Exemple 5.
En particulier le nombre d’applications de E dans lui-même est nn. Par exemple si E = {1, 2, 3, 4, 5} alors ce
nombre est 55 = 3125.

Démonstration. Fixons F et p = Card F . Nous allons effectuer une récurrence sur n = Card E. Soit (Pn)
l’assertion suivante : le nombre d’applications d’un ensemble à n éléments vers un ensemble à p éléments
est pn.

• Initialisation. Pour n= 1, une application de E dans F est définie par l’image de l’unique élément de E.
Il y a p = Card F choix possibles et donc p1 applications distinctes. Ainsi P1 est vraie.

• Hérédité. Fixons n ⩾ 1 et supposons que Pn est vraie. Soit E un ensemble à n+ 1 éléments. On choisit
et fixe a ∈ E ; soit alors E′ = E \ {a} qui a bien n éléments. Le nombre d’applications de E′ vers F est
pn, par l’hypothèse de récurrence (Pn). Pour chaque application f : E′→ F on peut la prolonger en une
application f : E→ F en choisissant l’image de a. On a p choix pour l’image de a et donc pn × p choix
pour les applications de E vers F . Ainsi Pn+1 est vérifiée.

• Conclusion. Par le principe de récurrence Pn est vraie, pour tout n ⩾ 1.

Proposition 7.
Le nombre d’injections de E dans F est :

p× (p− 1)× · · · × (p− (n− 1)).

Démonstration. Supposons E = {a1, a2, . . . , an} ; pour l’image de a1 nous avons p choix. Une fois ce choix
fait, pour l’image de a2 il reste p− 1 choix (car a2 ne doit pas avoir la même image que a1). Pour l’image
de a3 il y a p − 2 possibilités. Ainsi de suite : pour l’image de ak il y a p − (k − 1) choix... Il y a au final
p× (p− 1)× · · · × (p− (n− 1)) applications injectives.

Notation factorielle : n!= 1× 2× 3× · · · × n. Avec 1!= 1 et par convention 0!= 1.

Proposition 8.
Le nombre de bijections d’un ensemble E de cardinal n dans lui-même est :

n!

Exemple 6.
Parmi les 3125 applications de {1,2, 3,4, 5} dans lui-même il y en a 5!= 120 qui sont bijectives.

Démonstration. Nous allons le prouver par récurrence sur n. Soit (Pn) l’assertion suivante : le nombre de
bijections d’un ensemble à n éléments dans un ensemble à n éléments est n!

• P1 est vraie. Il n’y a qu’une bijection d’un ensemble à 1 élément dans un ensemble à 1 élément.

• Fixons n ⩾ 1 et supposons que Pn est vraie. Soit E un ensemble à n + 1 éléments. On fixe a ∈ E.
Pour chaque b ∈ E il y a –par l’hypothèse de récurrence– exactement n! applications bijectives de
E \ {a} → E \ {b}. Chaque application se prolonge en une bijection de E→ F en posant a 7→ b. Comme
il y a n+ 1 choix de b ∈ E alors nous obtenons n!× (n+ 1) bijections de E dans lui-même. Ainsi Pn+1 est
vraie.

• Par le principe de récurrence le nombre de bijections d’un ensemble à n éléments est n!
On aurait aussi pu directement utiliser la proposition 7 avec n = p (sachant qu’alors les injections sont aussi
des bijections).
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4.3. Nombres de sous-ensembles

Soit E un ensemble fini de cardinal n.

Proposition 9.
Il y a 2Card E sous-ensembles de E :

CardP (E) = 2n

Exemple 7.
Si E = {1, 2,3, 4,5} alors P (E) a 25 = 32 parties. C’est un bon exercice de les énumérer :

• l’ensemble vide : ∅,

• 5 singletons : {1}, {2}, . . .,

• 10 paires : {1,2}, {1,3}, . . . , {2, 3}, . . .,

• 10 triplets : {1, 2,3}, . . .,

• 5 ensembles à 4 éléments : {1, 2,3, 4}, {1,2, 3,5}, . . .,

• et E tout entier : {1,2, 3,4, 5}.

Démonstration. Encore une récurrence sur n= Card E.

• Si n= 1, E = {a} est un singleton, les deux sous-ensembles sont : ∅ et E.

• Supposons que la proposition soit vraie pour n ⩾ 1 fixé. Soit E un ensemble à n+ 1 éléments. On fixe
a ∈ E. Il y a deux sortes de sous-ensembles de E :
— les sous-ensembles A qui ne contiennent pas a : ce sont les sous-ensembles A⊂ E\{a}. Par l’hypothèse

de récurrence il y en a 2n.
— les sous-ensembles A qui contiennent a : ils sont de la forme A = {a} ∪ A′ avec A′ ⊂ E \ {a}. Par

l’hypothèse de récurrence il y a 2n sous-ensembles A′ possibles et donc aussi 2n sous-ensembles A.
Le bilan : 2n + 2n = 2n+1 parties A⊂ E.

• Par le principe de récurrence, nous avons prouvé que si Card E = n alors on a CardP (E) = 2n.

4.4. Coefficients du binôme de Newton

Définition 7.
Le nombre de parties à k éléments d’un ensemble à n éléments est noté

�n
k

�

ou Ck
n .

Exemple 8.
Les parties à deux éléments de {1, 2, 3} sont {1, 2}, {1, 3} et {2, 3} et donc C2

3 = 3. Nous avons déjà classé
les parties de {1,2, 3,4, 5} par nombre d’éléments et donc

• C0
5 = 1 (la seule partie n’ayant aucun élément est l’ensemble vide),

• C1
5 = 5 (il y a 5 singletons),

• C2
5 = 10 (il y a 10 paires),

• C3
5 = 10,

• C4
5 = 5,

• C5
5 = 1 (la seule partie ayant 5 éléments est l’ensemble tout entier).

Sans calculs on peut déjà remarquer les faits suivants :

Proposition 10.

• C0
n = 1, C1

n = n, Cn
n = 1.
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• Cn−k
n = Ck

n

• Ck
n = nCk−1

n−1

• C0
n + C1

n + · · ·+ Ck
n + · · ·+ Cn

n = 2n

Démonstration.

1. Par exemple : C1
n = n car il y a n singletons.

2. Compter le nombre de parties A⊂ E ayant k éléments revient aussi à compter le nombre de parties de la
forme ∁A (qui ont donc n− k éléments), ainsi Cn−k

n = Ck
n .

3. La formule C0
n + C1

n + · · ·+ Ck
n + · · ·+ Cn

n = 2n exprime que faire la somme du nombre de parties à k
éléments, pour k = 0, . . . , n, revient à compter toutes les parties de E.

Proposition 11.

Ck
n = Ck

n−1 + Ck−1
n−1 (0< k < n)

Démonstration. Soit E un ensemble à n éléments, a ∈ E et E′ = E \ {a}. Il y a deux sortes de parties A⊂ E
ayant k éléments :

• celles qui ne contiennent pas a : ce sont donc des parties à k éléments dans E′ qui a n− 1 éléments. Il y
a en a donc Ck

n−1,

• celles qui contiennent a : elles sont de la forme A= {a} ∪ A′ avec A′ une partie à k− 1 éléments dans E′

qui a n− 1 éléments. Il y en a Ck−1
n−1 .

Bilan : Ck
n = Ck−1

n−1 + Ck
n−1.

Le triangle de Pascal est un algorithme pour calculer ces coefficients Ck
n . La ligne du haut correspond à C0

0 ,
la ligne suivante à C0

1 et C1
1 , la ligne d’après à C0

2 , C1
2 et C2

2 .
La dernière ligne du triangle de gauche aux coefficients C0

4 , C1
4 , . . ., C4

4 .
Comment continuer ce triangle pour obtenir le triangle de droite ? Chaque élément de la nouvelle ligne est
obtenu en ajoutant les deux nombres qui lui sont au-dessus à droite et au-dessus à gauche.

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1

1 1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

Ce qui fait que cela fonctionne c’est bien sûr la proposition 11 qui se représente ainsi :

C k−1
n−1 C k

n−1

C k
n



ENSEMBLES ET APPLICATIONS 4. BASES DU DÉNOMBREMENT (FACULTATIF) 36

Une autre façon de calculer le coefficient du binôme de Newton repose sur la formule suivante :

Proposition 12.

Ck
n =

n!
k!(n− k)!

Démonstration. Cela se fait par récurrence sur n. C’est clair pour n = 1. Si c’est vrai au rang n− 1 alors
écrivons Ck

n = Ck−1
n−1 + Ck

n−1 et utilisons l’hypothèse de récurrence pour Ck−1
n−1 et Ck

n−1. Ainsi

Ck
n = Ck−1

n−1 + Ck
n−1 =

(n− 1)!
(k− 1)!(n− 1− (k− 1))!

+
(n− 1)!

k!(n− 1− k)!

=
(n− 1)!

(k− 1)!(n− k− 1)!
×
�

1
n− k

+
1
k

�

=
(n− 1)!

(k− 1)!(n− k− 1)!
×

n
k(n− k)

=
n!

k!(n− k)!

4.5. Formule du binôme de Newton

Théorème 1.
Soient a, b ∈ R et n un entier positif alors :

(a+ b)n =
n
∑

k=0

Ck
n an−k · bk

Autrement dit :

(a+ b)n = C0
n an · b0 + C1

n an−1 · b1 + · · ·+ Ck
n an−k · bk + · · ·+ Cn

n a0 · bn

Le théorème est aussi vrai si a et b sont des nombres complexes.

Exemple 9.

1. Pour n= 2 on retrouve la formule archi-connue : (a+ b)2 = a2 + 2ab+ b2.

2. Il est aussi bon de connaître (a+ b)3 = a3 + 3a2 b+ 3ab2 + b3.

3. Si a = 1 et b = 1 on retrouve la formule :
∑n

k=0 Ck
n = 2n.

Démonstration. Nous allons effectuer une récurrence sur n. Soit (Pn) l’assertion : (a+b)n =
∑n

k=0 Ck
n an−k ·bk.

• Initialisation : Pour n= 1, (a+ b)1 = C0
1 a1 b0 + C1

1 a0 b1. Ainsi P1 est vraie.

• Hérédité : Fixons n ⩾ 2 et supposons que Pn−1 est vraie.

(a+ b)n = (a+ b) · (a+ b)n−1

= a
�

an−1 + · · ·+ Ck
n−1an−1−k bk + · · ·+ bn−1

�

+b
�

an−1 + · · ·+ Ck−1
n−1 an−1−(k−1)bk−1 + · · ·+ bn−1

�

= · · ·+
�

Ck
n−1 + Ck−1

n−1

�

an−k bk + · · ·

= · · ·+ Ck
n an−k bk + · · ·

=
n
∑

k=0

Ck
n an−k · bk

Ainsi Pn est vérifiée.

• Conclusion : par le principe de récurrence Pn est vraie, pour tout n ⩾ 1.
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Mini-exercices.

1. Combien y a-t-il d’applications injectives d’un ensemble à n éléments dans un ensemble à n + 1
éléments ?

2. Combien y a-t-il d’applications surjectives d’un ensemble à n + 1 éléments dans un ensemble à n
éléments ?

3. Calculer le nombre de façons de choisir 5 cartes dans un jeux de 32 cartes.

4. Calculer le nombre de listes à k éléments dans un ensemble à n éléments (les listes sont ordonnées :
par exemple (1,2, 3) ̸= (1, 3,2)).

5. Développer (a− b)4, (a+ b)5.

6. Que donne la formule du binôme pour a = −1, b = +1? En déduire que dans un ensemble à n
éléments il y a autant de parties de cardinal pair que de cardinal impair.

5. Exercices

TD

Exercice 18
Soient les ensembles :

A= {x ∈ N|x est un multiple de 2}

B = {x ∈ N|x est un multiple de 3}

C = {x ∈ N|x est un multiple de 6}

D = {x ∈ N|x est un multiple de 8}
Déterminer les ensembles A∩ B, A∩ C , A∪ C , B ∪ C , C ∩ D.

Exercice 19
Soient A et B deux sous ensembles de Ω. Illustrer avec des diagrammes de Venn les deux règles de
Morgan :

A∩ B = A∪ B

A∪ B = A∩ B

Exercice 20
Soient les ensembles A= {a, b}, B = {1, 3} et C = {4,5}. Déterminer les ensembles suivants :

1. A× (B ∪ C)

2. (A× B)∪ (A× C)

3. A× (B ∩ C)

4. (A× B)∩ (A× C)
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Exercice 21
Soit E un ensemble tel que Card(E) = 30. Si A et B sont deux sous ensembles de E non disjoints
(ie A∩ B ̸= ;) tels que Card(A) = 20, Card(B) = 15 et Card(A∩ B) = 6. Déterminer Card(A∪ B).

Exercice 22
Les résultats d’une entreprise ont montré que sur 50 employés, 30 sont obèses, 25 souffrent d’hy-
pertension artérielle tandis que 20 ont un taux de cholestérol trop élevé. Parmi les 25 qui souffrent
d’hypertension, 12 ont un taux de cholestérol trop élevé ; 15 obèses souffrent d’hypertension et 10
obèses souffrent d’un taux de cholestérol trop élevé ; finalement, 5 employés souffrent de ces trois
maux à la fois. Déterminer le nombre d’employés bien portant.

Entraînement

Exercice 23
Soient quatre ensemble A, B, C et D. Déterminer :

1. Card(A∪ B ∪ C)

2. Card(A∪ B ∪ C ∪ D)

Exercice 24
Une autoroute possède 3 sorties principales, chacune d’elle possédant elle-même deux sorties
secondaires. Quel est le nombre de façon de quitter l’autoroute?

Exercice 25
Soient 5 propositions. Combien de lignes contient le tableau de vérité ?

Auteurs du chapitre
• Arnaud Bodin, Benjamin Boutin, Pascal Romon
• Stéphane Adjemian,
• Frédéric Karamé



Fonctions
usuelles

Chapitre

4

Dans ce chapitre, nous résumons les fonctions importantes qui apparaissent naturellement dans la résolution
de problèmes simples en économie.

1. Représentation graphique des fonctions

Une fonction est un ensemble de paires ordonnées, construites à partir du produit cartésien de deux
ensembles, tel que chaque élément de l’ensemble de départ est associé à un et un seul élément de l’ensemble
d’arrivée.

Dans le chapitre précédent nous avons donné comme exemple de fonction :

B = {(x , y)|x ∈ N∧ y = 2x − 1}

Pour représenter les fonctions on utilise un plan cartésien.

Les éléments de l’ensemble de départ sont représentés sur une ligne horizontale (l’axe des abscisses).

Les éléments de l’ensemble d’arrivée sont représentés sur une ligne verticale (l’axe des ordonnées).

Chaque paire représente les coordonnées d’un point dans le plan.

x

y

| | | | |

−

−

−

−

−

0 1 2 3 4

−1

1

2

3

4

F I G U R E 4.1 – Exemple de représentation graphique d’une fonction dans un plan.
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2. Les droites

Définition 1.
La fonction la plus simple que nous puissions considérer est la droite. Celle-ci est caractérisée par
l’équation :

y = ax + b
où a et b sont des paramètres réels, il s’agit d’une fonction de R dans R.

– Le paramètre a est la pente de la droite.
– Le paramètre b est l’ordonnée à l’origine.
– Si f (x) = ax + b, ∀x0, x1 ∈ R×R tel que x0 ̸= x1 :

a =
f (x1)− f (x0)

x1 − x0

b = f (0)

x

y

| |

−

−

x0 x1

f (x0)

f (x1)

y = ax + b

b

F I G U R E 4.2 – Exemple de représentation graphique d’une droite dans un plan.

On peut faire beaucoup de choses avec des droites. Vous verrez plus tard que l’on utilise souvent des droites
pour approximer des fonctions plus générales (et complexes).

Ce que vous devez savoir faire :

1. Tracer une droite dans un plan.

2. Retrouver l’équation d’une droite à partir d’un tracé.

3. Trouver l’intersection d’une droite et de l’axe des abscisses.

4. Calculer le point d’intersection de deux droites.
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2.1. Tracer une droite à partir de son équation

Il suffit de se donner deux points sur la droite, de représenter ces deux points dans le plan, puis de les relier
(avec une règle).

Soit la droite y = ax + b ≡ f (x).

On sait qu’elle passe par (0, b) (car f (0) = b). b est l’ordonnée à l’origine.

On se donne un autre point, par exemple (1, a+ b) appartient aussi à la droite (car f (1) = a+ b).

x

y

−

−

y = ax + b

0 1

a+ b

1

a

b

F I G U R E 4.3 – Tracer une droite avec 2 points.

2.2. Déterminer l’équation d’une droite avec deux points

Supposons qu’une droite passe par les points (x0, y0) et (x1, y1).

Déterminons l’équation de la droite qui passe par ces deux points, c’est-à-dire déterminons la pente a et
l’ordonnée à l’origine b de la droite qui passe par ces deux points.

Les paramètres a et b sont tels que les 2 points (x0, y0) et (x1, y1) vérifient l’équation de la droite :
(

y0 = ax0 + b

y1 = ax1 + b

Nous avons deux équations et deux inconnues, que l’on peut résoudre comme vu au chapitre 1.

Par substitution ou en soustrayant les équations pour faire disparaître b et isoler a :

a =
y0 − y1

x0 − x1
(pente)

En remplaçant l’expression de a dans une des deux équations pour trouver b :

b = y1 −
y0 − y1

x0 − x1
x1

= y0 −
y0 − y1

x0 − x1
x0
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Notons que tout cela ne fonctionne que si x0 ̸= x1 (voir l’expression de la pente)... Les deux points doivent
être différents ! Autrement il n’est pas possible d’identifier la droite (on ne peut pas identifier de façon
unique une droite passant par un seul point).

x

y

| | |

−

−

x0 x1

y0

y1

b = y1 −
y0 − y1

x0 − x1
x1

F I G U R E 4.4 – Trouver l’équation d’une droite avec deux points.

2.3. Déterminer l’intersection d’une droite et de l’axe des abscisses

On cherche la valeur de x telle que ax + b = 0.

Il s’agit donc de résoudre une simple équation linéaire dont le résultat est x = −
b
a

.

x

y y = ax + b

b

−
b
a

F I G U R E 4.5 – Représentation graphique de l’abscisse à l’origine.

2.4. Déterminer l’intersection de deux droites

Soient deux droites distinctes :
y = a1 x + b1

y = a2 x + b2

où a1 ̸= a2 (autrement les droites sont parallèles et n’admettent donc pas d’intersection).

On cherche le point d’intersection (x⋆, y⋆), celui-ci doit vérifier :

a1 x⋆ + b1 = a2 x⋆ + b2
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soit de façon équivalente :

x⋆ =
b2 − b1

a1 − a2
(si a1 ̸= a2)

Et on déduit :

y⋆ = a1 x⋆ + b1 = a2 x⋆ + b2

x

y

y = a1 x + b1

b1

−
b1

a1

y = a2 x + b2

b2

−
b2

a2

x⋆

y⋆

F I G U R E 4.6 – Représentation graphique de l’intersection de deux droites.

3. Fonctions polynomiales

3.1. Définition

Définition 2.
On appelle polynôme de degré n ∈ N la fonction de R dans R donnée par :

Pn(x) = αn xn +αn−1 xn−1 + . . .+α1 x +α0

où les coefficients {αi}ni=1 sont réels et αn ≠ 0 (sinon le polynôme n’est pas de degré n mais au mieux
n− 1).

On peut voir le polynôme comme une généralisation de la droite. Pour n= 1, on a :

f (x) = α1 x +α0

c’est-à-dire l’équation de la droite.

Les puissances de x , c’est-à-dire les termes x i pour i = 1, . . . , n, sont des monômes.

Un polynôme est une combinaison linéaire de monômes.
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x

y

y = x2

y = x2 − 2x − 1

x

y

y = −x2 − 1

y = −x2 + 2x + 1

x

y
y = x3

x

y
y = x5 − 5x3 + 4x

F I G U R E 4.7 – Représentation graphique de différents polynômes.

On va beaucoup s’intéresser à la factorisation des polynômes (c’est-à-dire à les mettre sous des formes
simples de produits de monômes) et à la détermination de leurs racines (c’est-à-dire les valeurs de x pour
lesquelles le polynôme est égal à 0). On verra également que ces deux questions sont très liées.

Définition 3.
Une racine x⋆ d’un polynôme de degré n, Pn(x), est une valeur de x telle que Pn(x⋆) = 0.

Graphiquement, les racines réelles d’un polynôme correspondent à l’intersection de la courbe représen-
tative du polynôme et de l’axe des abscisses.

Un polynôme peut avoir plusieurs racines, on verra plus loin que le nombre de racines est lié au degré du
polynôme.

3.2. Comment trouver la racine d’une équation d’ordre 1?

n= 1 dans ce cas. Il suffit de résoudre une équation linéaire. On sait faire.

f (x⋆) = 0 ⇐⇒ ax⋆ + b = 0 ⇐⇒ x⋆ = −
b
a

car a ̸= 0
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Il n’y a donc qu’une seule racine possible ici (car a ̸= 0).
Si a = 0, la droite est horizontale car y ne dépend pas de x . Il n’y a donc pas de solution (sauf si b = 0
également, alors dans ce cas il y a une infinité de solutions).

3.3. Comment trouver les racines d’un polynôme d’ordre 2?

Définition 4.
Soit le polynôme d’ordre 2 :

f (x) = ax2 + bx + c avec a ̸= 0

Son discriminant est défini comme :

∆= b2 − 4ac
Le nombre et la nature des racines dépendent du signe du discriminant :

• si ∆> 0, le polynôme possède deux racines réelles :

x⋆ =
−b±
p
∆

2a

• si ∆= 0, le polynôme possède une racine réelle de multiplicité deux, x⋆ = −
b

2a
.

• si ∆< 0, le polynôme ne possède pas de racine réelle mais deux racines complexes conjuguées :

x⋆ =
−b± i

p
−∆

2a
où i est le nombre imaginaire tel que i2 = −1.

Faisons la preuve de la méthode du discriminant.

Divisons f par a ̸= 0 (sinon f n’est pas un polynôme d’ordre 2). Les racines de f (x) sont aussi les racines
de g(x) :

g(x) =
f (x)

a
= x2 +

b
a

x +
c
a

Pour retrouver le résultat du théorème, nous allons faire apparaître des termes qui se compensent (en
orange et bleu) puis factoriser g(x) en utilisant l’identité remarquable : (α+ β)2 = α2 + 2αβ + β2 :

g(x) = x2 +
b
a

x +
c
a

= x2 + 2
b

2a
x +

b2

4a2
︸ ︷︷ ︸

−
b2

4a2
+

c
a

=
�

x +
b

2a

�2

−
b2

4a2
+

c
a

=
�

x +
b

2a

�2

−
�

b2

4a2
−

c
a

�

=
�

x +
b

2a

�2

−
b2 − 4ac

4a2

=
�

x +
b

2a

�2

−
∆

4a2

avec ∆= b2 − 4ac le discriminant.
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Si ∆⩾ 0, utilisons l’identité remarquable : α2 − β2 = (α− β)(α+ β) et appliquons la racine carrée d’un
nombre positif ou nul

p
∆ :

g(x) =

�

x +
b

2a
−
p
∆

2a

��

x +
b

2a
+
p
∆

2a

�

=

�

x +
b−
p
∆

2a

��

x +
b+
p
∆

2a

�

Les racines du polynôme sont donc :

f (x) = 0 ⇐⇒ g(x) = 0 ⇐⇒
�

x +
b−
p
∆

2a

��

x +
b+
p
∆

2a

�

= 0 ⇐⇒











x⋆ = −
b−
p
∆

2a

x⋆ = −
b+
p
∆

2a

Si ∆= 0, le polynôme se réécrit :
�

x +
b

2a

�2

= 0. Le résultat se simplifie en x⋆ = −
b

2a
, racine unique.

Enfin, si ∆< 0, il n’y a pas de solution réelle et il faut chercher ailleurs.

Pour trouver des solutions à cette équation il faut sortir de l’ensemble des réels et imaginer un ensemble où
cette équation admette une (des) solution(s)⇒ Les nombres complexes. . .

On définit l’ensemble des nombres complexes noté C, dont R est un sous-ensemble, en « imaginant » que
l’équation x2 = −1 admette une solution que nous noterons i.

i est le nombre imaginaire qui se définit par i2 = −1.

Tout nombre complexe x ∈ C peut s’écrire sous la forme :

x = a+ i · b

où a ∈ R est la partie réelle de x et b ∈ R la partie imaginaire.

Re{x}

Im{x}

−3 −2 −1 1 2 3

1

2

3 2+ 3i

F I G U R E 4.8 – Représentation graphique d’un nombre complexe
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On peut donc calculer la racine carrée de ∆< 0 en remplaçant le signe négatif par i2. Il vient :

g(x) =

�

x +
b

2a
−

i
p
−∆

2a

��

x +
b

2a
+

i
p
−∆

2a

�

=

�

x +
b− i
p
−∆

2a

��

x +
b+ i
p
−∆

2a

�

Les racines du polynôme sont donc des complexes conjugués dans ce cas :

f (x) = 0 ⇐⇒ g(x) = 0 ⇐⇒
�

x +
b− i
p
−∆

2a

��

x +
b+ i
p
−∆

2a

�

= 0 ⇐⇒











x⋆ = −
b− i
p
−∆

2a

x⋆ = −
b+ i
p
−∆

2a

Illustration graphique

∆< 0 ∆= 0 ∆> 0

a
>

0

x xx⋆
xx⋆1 x⋆2

a
<

0 x
x

x⋆

x

x⋆1 x⋆2

F I G U R E 4.9 – Tous les cas possibles de racines réelles pour les polynômes d’ordre 2.

3.4. Comment trouver les racines d’un polynôme d’ordre supérieur?

De la même façon que pour les polynôme d’ordre 2, il existe des formules (par radicaux, c’est-à-dire qui
n’utilisent que les opérations usuelles et des racines) pour calculer les solutions des équations polynomiales
de degré 3 ou 4. Mais ces formules sont assez difficile à lire.

En pratique, dans la vie d’un étudiant, on cherche des « racines évidentes » (petits entiers), et factorise le
polynôme pour réduire le degré du polynôme dont il restera à calculer les racines.On utilisera pour cela la
division euclidienne appliquée aux polynômes ou la méthode des coefficients indéterminés.

En pratique, dans la vraie vie, on utilise un ordinateur pour calculer numériquement les racines.

Définition 5.
Soient deux polynômes S(x) et T (x) ̸= 0, alors il existe deux polynômes Q(x) et R(x) uniques tels que
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S(x) =Q(x)T (x) + R(x), avec R(x) = 0 ou un polynôme de degré inférieur au polynôme T (x).

Q(x) est le quotient de la division euclidienne de S(x) par T (x).

R(x) est le reste de la division euclidienne.

Si le reste de la division euclidienne est nul, on dit qu’on a factorisé le polynôme S(x), puisque S(x) =
Q(x)T (x).

Exemple 1.
Soient les polynômes S(x) = x3 − 2x2 + x + 3 et T (x) = x + 1.

La division de S(x) par T (x) :

x3 − 2x2 + x + 3 x + 1

x2 − 3x + 4

x3 + x2−

0− 3x2 + x + 3

−3x2 − 3x−

0+ 4x + 3

4x + 4−

0− 1

Le quotient est Q(x) = x2 − 3x + 4 et le reste R(x) = −1.
On peut donc écrire :

x3 − 2x2 + x + 3= (x + 1)(x2 − 3x + 4)− 1

Exemple 2.
Soient les polynômes S(x) = 2x4 − x3 − 2x2 + 3x − 1 et T (x) = x2 − x + 1.

La division de S(x) par T (x) :

2x4 − x3 − 2x2 + 3x − 1 x2 − x + 1

2x2 + x − 3

2x4 − 2x3 + 2x2−

x3 − 4x2 + 3x − 1

x3 − x2 + x−

−3x2 + 2x − 1

−3x2 + 3x − 3−

−x + 2
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Le quotient est Q(x) = 2x2 + x − 3 et le reste R(x) = −x + 2.

On peut donc écrire :

2x4 − x3 − 2x2 + 3x − 1= (x2 − x + 1)(2x2 + x − 3)− x + 2

Exemple 3.
Soient les polynômes S(x) = x3 + 6x2 − x − 30 et T (x) = x + 5.

La division de S(x) par T (x) :

x3 + 6x2 − x − 30 x + 5

x2 + x − 6

x3 + 5x2−

0+ x2 − x − 30

x2 + 5x−

0 − 6x − 30

−6x − 30−

0

Le quotient est Q(x) = x2 + x − 6 et le reste est nul.

On peut donc écrire :

x3 + 6x2 − x − 30= (x + 5)(x2 + x − 6)

Lorsque le reste de la division euclidienne est nul, c’est-à-dire lorsqu’il est possible d’écrire S(x) =Q(x)T (x),
alors les racines de Q(x) sont des racines de S(x) et les racines de T (x) sont des racines de S(x).

Dans l’autre sens, si x⋆ est une racine de S(x) alors x⋆ est une racine de Q(x) ou une racine de T (x).

Dans le dernier exemple on a T (x) = x + 5, donc −5 est une racine de S(x) = x3 + 6x2 − x − 30.

Plus généralement, si x⋆ est la racine d’un polynôme S(x), alors on peut toujours factoriser celui-ci sous la
forme : S(x) = (x − x⋆)Q(x).

Définition 6.
Un polynôme de degré 2 est une fonction de R dans R définie par :

f (x) = ax2 + bx + c

avec a ̸= 0, b et c des paramètres réels.

Une racine du polynôme de degré 2 est une valeur de x , notée x⋆, telle que :

a x⋆ 2 + bx⋆ + c = 0

Cette équation admet au plus deux racines réelles.
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Si x⋆1 et x⋆2 sont deux racines réelles, alors on a :

ax2 + bx + c = a(x − x⋆1)(x − x⋆2)

pour tout x ∈ R

Définition 7.
Soit Pn(x) un polynôme de degré n de R dans R (an ̸= 0 le coefficient de xn).

Le polynôme possède au plus n racines réelles x⋆i pour ∀i = 1, . . . , n qui vérifient toutes :

Pn(x
⋆
i ) = 0

Le polynôme peut alors être mis sous la forme :

Pn(x) = an(x − x⋆1) . . . (x − x⋆n)
pour tout x ∈ R

Exemple 4.
Soit le polynôme de degré deux f (x) = x2 − 1. Les racines de ce polynôme sont les solutions de l’équation :

x2 − 1= 0

c’est-à-dire les valeurs de x telles que x2 = 1. On voit immédiatement qu’il existe deux solutions :

x⋆1 = −1 et x⋆2 = 1

et on retrouve donc une identité remarquable bien connue :

x2 − 1= (x + 1)(x − 1)

Exemple 5.
Soit le polynôme de degré deux f (x) = x2 − 2x + 1. Les racines de ce polynôme sont les solutions de
l’équation :

x2 − 2x + 1= 0

On reconnaît une identité remarquable :

x2 − 2x + 1= (x − 1)2 = (x − 1)(x − 1)

Ainsi x⋆ = 1 est une racine. On dit qu’il s’agit d’une racine double (ou de multiplicité deux) à cause la
puissance deux le terme x − 1. On a donc :

x⋆1 = 1 et x⋆2 = 1

Exemple 6.
Soit le polynôme de degré deux f (x) = x2 + 1. Les racines de ce polynôme sont les solutions de l’équation :

x2 = −1

Il n’existe pas de solution réelle à cette équation, car le carré d’un nombre réel est toujours positif. Mais on
peut trouver dans les complexes...

Exemple 7.
Soit le polynôme de degré 3 :

f (x) = x3 −
7
4

x2 +
7
8

x −
1
8
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On note que pour x = 1, on a :

f (1) = 1−
7
4
+

7
8
−

1
8
=

8− 14+ 7− 1
8

= 0

On sait donc qu’on peut factoriser (x − 1), c’est-à-dire écrire f (x) comme le produit d’un polynôme de
degré 2 et de (x − 1).

Pour trouver le polynôme de degré 2 on peut faire une division euclidienne comme précédemment, ou
procéder par la méthode dite des « coefficients indéterminés ».

Postulons f (x) = (x − 1)(ax2 + bx + c) et identifions les paramètres a, b et c en développant l’expression.
Nous devons donc avoir :

x3 −
7
4

x2 +
7
8

x −
1
8
= (x − 1)(ax2 + bx + c)

C’est-à-dire :

x3 −
7
4

x2 +
7
8

x −
1
8
= ax3 + bx2 + cx − ax2 − bx − c

= ax3 + (b− a)x2 + (c − b)x − c

Par identification des coefficients par monôme, on a donc :






















1 = a

−7
4 = b− a

7
8 = c − b
1
8 = c

⇔











a = 1

b = −3
4

c = 1
8

Et donc :

x3 −
7
4

x2 +
7
8

x −
1
8
= (x − 1)

�

x2 −
3
4

x +
1
8

�

Il existe des algorithmes plus généraux pour trouver les zéros d’une fonction, c’est à dire des valeurs de x
telles que f (x) = 0. On verra une version simple de ces algorithmes (qui reposent souvent sur des calculs
de dérivées).

3.5. Les fonctions rationnelles

Définition 8.

Une fonction rationnelle est une fonction de la forme
p(x)
q(x)

, où p(x) et q(x) sont des fonctions polyno-

miales, c’est-à-dire :

f (x) =
αn xn +αn−1 xn−1 + . . .+α1 x +α0

βm xm + βm−1 xm−1 + . . .+ β1 x + β0

Si q(x) est un polynôme de degré 0 alors f (x) est une fonction polynomiale.

La fonction f est à valeur dans R, mais le domaine de la fonction n’est généralement pas R. Il faut exclure
les points où q(x) est nulle, c’est-à-dire les racines de q(x). Ainsi :

f : {x ∈ R|q(x) ̸= 0} −→ R

x 7−→ y =
p(x)
q(x)
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f (x) =
x − 1

2

x3 − x

F I G U R E 4.10 – Exemple de fonction rationnelle.

4. Fonctions puissances

4.1. Généralités

Définition 9.
On appelle fonction puissance les fonctions de la forme :

f (x) = xα

où α est une constante réelle.

Le domaine de définition dépend de α.

Si α ∈Q, c’est-à-dire s’il existe p et q dans N tels que α=
p
q

, alors on écrit : xα = x
p
q = qpx p.

Si α est un entier naturel, alors le domaine de définition est R.
Si α est un entier négatif, alors le domaine de définition est R \ {0}.

Si α=
1
q

, le domaine de définition est R si q est impair et R+ sinon.

x

y

y = x2 y = x

y =
p

x

1

10

F I G U R E 4.11 – Différentes fonctions puissance.
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4.2. Quelques règles de calcul à bien connaître

xa x b = xa+b

On se souvient que xa = x × · · · × x
︸ ︷︷ ︸

a fois

.

Donc en revenant à cette définition si on a un doute :
xa x b = x × · · · × x

︸ ︷︷ ︸

a fois

× x × · · · × x
︸ ︷︷ ︸

b fois
︸ ︷︷ ︸

a+b fois

= xa+b

(xa)b = xab

(xa)b = xa × . . .× xa
︸ ︷︷ ︸

b fois

= xab

On en déduit : (x
1
a )b = x

b
a .

xa ya = (x y)a

xa ya = x × · · · × x
︸ ︷︷ ︸

a fois

× y × · · · × y
︸ ︷︷ ︸

a fois

= x y × · · · × x y
︸ ︷︷ ︸

a fois

= (x y)a

1
xa
= x−a

Pour s’en convaincre, calculons :

xa × x−a = xa−a

= x0

= 1

grâce au point 1. De l’égalité, il vient :

xa × x−a = 1⇔ x−a =
1
xa

1
x−a

= xa

Grâce au point précédent et aux règles de calcul des fractions :
1

x−a
=

1
1
xa

= 1×
xa

1
= xa
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5. Logarithme et exponentielle

5.1. Logarithme

Proposition 1.
Il existe une unique fonction, notée ln :]0,+∞[→ R telle que :

ln′(x) =
1
x
(pour tout x > 0) et ln(1) = 0.

De plus cette fonction vérifie (pour tout a, b > 0) :

1. ln(a× b) = ln a+ ln b,

2. ln(1
a ) = − ln a,

3. ln(an) = n ln a, (pour tout n ∈ N)

4. ln est une fonction continue, strictement croissante et définit une bijection de ]0,+∞[ sur R,

5. limx→0
ln(1+x)

x = 1,

6. la fonction ln est concave et ln x ⩽ x − 1 (pour tout x > 0).

x

y

ln x

e

1

10

F I G U R E 4.12 – La fonction logarithme néperien.

Remarque.
ln x s’appelle le logarithme naturel ou aussi logarithme néperien. Il est caractérisé par ln(e) = 1. On
définit le logarithme en base a par

loga(x) =
ln(x)
ln(a)

De sorte que loga(a) = 1.
Pour a = 10 on obtient le logarithme décimal log10 qui vérifie log10(10) = 1 (et donc log10(10n) = n).
Dans la pratique on utilise l’équivalence :

x = 10y ⇐⇒ y = log10(x)

En informatique intervient aussi le logarithme en base 2 : log2(2
n) = n.



FONCTIONS USUELLES 5. LOGARITHME ET EXPONENTIELLE 55

5.2. Exponentielle

Définition 10.
La bijection réciproque de ln :]0,+∞[→ R s’appelle la fonction exponentielle, notée exp : R→]0,+∞[.

x

y exp x

e

1

10

F I G U R E 4.13 – La fonction exponentielle.

Pour x ∈ R on note aussi ex pour exp x .

Proposition 2.
La fonction exponentielle vérifie les propriétés suivantes :

• exp(ln x) = x pour tout x > 0

• ln(exp x) = x pour tout x ∈ R
• exp(a+ b) = exp(a)× exp(b)

• exp(a− b) =
exp(a)
exp(b)

• exp(nx) = (exp x)n

• exp : R→]0,+∞[ est une fonction continue, strictement croissante vérifiant limx→−∞ exp x = 0 et
limx→+∞ exp= +∞.

• La fonction exponentielle est dérivable et exp′ x = exp x, pour tout x ∈ R. Elle est convexe et exp x ⩾ 1+x.

Remarque.
La fonction exponentielle est l’unique fonction qui vérifie exp′(x) = exp(x) (pour tout x ∈ R) et exp(1) = e.
Où e ≃ 2, 718 . . . est le nombre qui vérifie ln e = 1.

5.3. Comparaison des fonctions usuelles

Comparons les fonctions ln x , exp x avec x :

Proposition 3.

lim
x→+∞

ln x
x
= 0 et lim

x→+∞

exp x
x
= +∞.
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x

y xa (a > 1)

xa (a < 1)

exp x

ln x

x

1

10

F I G U R E 4.14 – Comparaison des fonctions usuelles.

Démonstration.

1. On a vu ln x ⩽ x − 1 (pour tout x > 0). Donc ln x ⩽ x donc ln
p

xp
x ⩽ 1. Cela donne

0 ⩽
ln x

x
=

ln
�p

x2
�

x
= 2

ln
p

x
x
= 2

ln
p

x
p

x
1
p

x
⩽

2
p

x

Cette double inégalité entraîne limx→+∞
ln x

x = 0.

2. On a vu exp x ⩾ 1+ x (pour tout x ∈ R). Donc exp x → +∞ (lorsque x → +∞).
x

exp x
=

ln(exp x)
exp x

=
ln u
u

Lorsque x → +∞ alors u = exp x → +∞ et donc par le premier point ln u
u → 0. Donc x

exp x → 0 et reste
positive, ainsi limx→+∞

exp x
x = +∞.

Mini-exercices.

1. Montrer que ln(1+ ex) = x + ln(1+ e−x), pour tout x ∈ R.

2. Étudier la fonction f (x) = ln(x2 + 1)− ln(x)− 1. Tracer son graphe. Résoudre l’équation ( f (x) = 0).
Idem avec g(x) = 1+ln x

x . Idem avec h(x) = x x .

3. Expliquer comment log10 permet de calculer le nombre de chiffres d’un entier n.

4. Montrer ln(1+ x)⩾ x − x2

2 pour x ⩾ 0 (faire une étude de fonction). Idem avec ex ⩾ 1+ x + x2

2 pour
tout x ⩾ 0.

5. Calculer la limite de la suite définie par un =
�

1+ 1
n

�n
lorsque n → +∞. Idem avec vn =

� 1
n

�n
et

wn = n
1
n .
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6. Exercices

TD

Exercice 26
Soient les ensembles :

E1 = {(1; 2), (2; 8), (2; 3)}
E2 = {(x; y)|x ∈ R∧ x ⩽ y}
E3 = {(x; y)|x ∈ R∧ y = x2}
E4 = {(x; y)|y = x2 si 0 ⩽ x ⩽ 2, y = 3− x si 2< x < 3, y = 3 si x = 3}

Déterminez quels ensembles représentent une fonction.

Exercice 27
Soit la fonction :

f : R→ R
x 7→ f (x) = x2 + 2x + 4

Calculer :
f (x + h)− f (x)

h
Interpréter cette expression.

Exercice 28
La fonction suivante est-elle injective?

f : R→ R
x 7→ f (x) = x2 + x − 2

Exercice 29
Soient les fonctions f (x) = x + 2 et g(x) = 2x + 5.

1. Calculer h(x) = (g ◦ f )(x) = g ( f (x)) et m(x) = ( f ◦ g)(x) = f (g(x)).

2. Calculer f −1(x) et g−1(x).

3. Calculer h−1(x) et m−1(x).

4. Calculer
�

f −1 ◦ g−1
�

(x) et
�

g−1 ◦ f −1
�

(x)

Comparer les résultats des deux dernières questions.

Exercice 30
Quel est le domaine de définition des fonctions suivantes ?

1. f (x) = 2
x

2. f (x) = 4+ 7
x−2

3. f (x) = 2+ 8
x2+2

4. f (x) = 17+ 3x + 1
x2−16

5. f (x) = 5− 2
x2−5x+6

Exercice 31
Exprimer à l’aide de quantificateurs les propositions suivantes :
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1. La fonction f : R→ R n’est pas nulle.

2. La fonction f : R→ R ne s’annule pas sur R.

3. La fonction f : R→ R n’est pas l’identité de R.

4. La fonction f : R→ R est croissante sur R.

5. La fonction f : R→ R n’est pas croissante sur R.

Exercice 32
Montrer que la fonction définie sur R f (x) = x2 + 2x + 1 admet un unique minimum en x = −1.

Exercice 33
Sur un marché, la demande et l’offre pour un bien sont caractérisés par :

D(p) : q = −2p2 + 3

S(p) : q = p2 + 5p+ 2

où p est le prix du bien et q sa quantité (on s’intéresse aux valeurs positives de p et q). Calculer la
quantité d’équilibre et le prix d’équilibre.

Exercice 34
Montrer qu’il existe un unique polynôme d’ordre deux passant par les points (0,2), (−2,16) et
(1,4).

Exercice 35
Calculer les racines de P(x) = x2 − 2x − 3 sans utiliser les formules usuelles.

Exercice 36
Sans calculer le discriminant, montrer que le polynôme P(x) = x2 − 2x + 2 défini sur R n’admet
pas de solution réelle.

Exercice 37
Soit P(x) = x3 − 8x2 + 23x − 28. Déterminer les racines du polynôme P sachant que la somme de
deux des racines est égale à la troisième.

Exercice 38
Chercher les solutions des équations suivantes :

1. x3 − 2x2 + 2x = 0

2. x3 + 2x2 − x − 2= 0

3. x4 − 5x2 + 4= 0

4. x2 − 2
p

2x + 2= 0

5. x3 − 4x + 3
x = 0

Exercice 39
Trouver trois entiers naturels consécutifs tels que la somme de leurs carrés est égale à 50.

Exercice 40
Une fonction f est dite paire si f (−x) = f (x) et impair si f (−x) = − f (x). Par exemple, la fonction
f (x) = x2 est paire car f (−x) = (−x)2 = (−1)2 x = x , la fonction f (x) = x3 est impaire car
f (−x) = (−x3) = (−1)3 x3 = −x3. Étudier la parité des fonctions suivantes :
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1. f (x) = ex − e−x

2. g(x) = e2x−1
e2x+1

3. h(x) = ex

(ex+1)2

Exercice 41
Chercher des solutions réelles pour les équations suivantes :

1. e2x − ex − 6= 0

2. 3ex − 7e−x − 20= 0

Exercice 42
Résoudre en x et y les systèmes d’équations suivants :

(i)

¨

ex e y = 10

ex−y = 2
5

(ii)

¨

ex − 2e y = −5

3ex + e y = 13
(ii)

¨

5ex − e y = 19

ex+y = 30

Exercice 43
Chercher les solutions réelles pour les équations suivantes :

1. ln(x2 − 1)− ln(2x − 1) + ln2= 0

2. ln(x + 2)− ln(x + 1) = ln(x − 1)

Entraînement

Exercice 44
Soit la fonction f définie sur R par f (x) = ln(x +

p
x2 + 1). Etudier son sens de variation. Définir

que c’est une bijection et calculer sa fonction réciproque.

Exercice 45
Déterminer les solutions de l’équation suivante :

1. x2 − 4x
p

2+ 6= 0.

2. x2 + x + 1= 0.

Exercice 46
Soit la fonction suivante : ∀x ∈ R, f (x) = x3 − 7x2 + 14x − 8. Résoudre f (x) = 0.

Exercice 47
Soit la fonction f (x) = x2 + 2x + 2 définie pour toutes valeurs de x dans R. Identifier x⋆ qui
minimise f puis calculer f (x⋆).

Exercice 48
Calculer (x + 2)5 directement puis avec le binôme de Newton.

Exercice 49
Déterminer les ensembles de définition des fonctions suivantes :

1. f (x) = 3x4 − 7x3 + 8x − 2

2. f (x) = 17x2 −
p

x
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3. f (x) =
p

x2 + 1

4. f (x) = 8
x −

7
x3

5. f (x) = 2+x
2−x

6. f (x) = x2−7
x−3

7. f (x) =
q

1−x
x2+2 .

Auteurs du chapitre
• Arnaud Bodin, Niels Borne, Laura Desideri,
• Stéphane Adjemian,
• Frédéric Karamé



Limites et
continuité

Chapitre

5

Vidéo ■ partie 1. Notions de fonction
Vidéo ■ partie 2. Limites
Vidéo ■ partie 3. Continuité en un point
Vidéo ■ partie 4. Continuité sur un intervalle
Vidéo ■ partie 5. Fonctions monotones et bijections

Motivation

Les équations en une variable x qu’on sait résoudre explicitement, c’est-à-dire en donnant une formule pour
la solution, sont très particulières : par exemple les équations du premier degré ax + b = 0, celles du second
degré ax2 + bx + c = 0.
Mais pour la plupart des équations, il n’est pas possible de donner une formule pour la ou les solutions.
En fait il n’est même pas évident de déterminer seulement le nombre de solutions, ni même s’il en existe.
Considérons par exemple l’équation extrêmement simple :

x + exp x = 0

Il n’y a pas de formule explicite (utilisant des sommes, des produits, des fonctions usuelles) pour trouver la
solution x .
Dans ce chapitre nous allons voir que grâce à l’étude de la fonction f (x) = x +exp x , il est possible d’obtenir
beaucoup d’informations sur l’ensemble des solutions de l’équation x + exp x = 0, et même de l’équation
plus générale x + exp x = y (où y ∈ R est fixé).

x

y

x + exp(x)

Nous serons capables de prouver que pour chaque y ∈ R l’équation « x + exp x = y » admet une solution
x , que cette solution est unique, et nous saurons dire comment varie x en fonction de y. Le point clé de
cette résolution est l’étude de la fonction f et en particulier de sa continuité. Même s’il n’est pas possible
de trouver l’expression exacte de la solution x en fonction de y, nous allons mettre en place les outils
théoriques qui permettent d’en trouver une solution approchée.

http://www.youtube.com/watch?v=_4okV9eXD8k
http://www.youtube.com/watch?v=9L12nIsoYX0
http://www.youtube.com/watch?v=TJLpXWXPsFs
http://www.youtube.com/watch?v=_cA6CkKYZxU
http://www.youtube.com/watch?v=TAUg4HL5fHs
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1. Propriétes des fonctions

1.1. Définitions

Définition 1.
Une fonction d’une variable réelle à valeurs réelles est une application f : U → R, où U est une partie de
R. En général, U est un intervalle ou une réunion d’intervalles. On appelle U le domaine de définition
de la fonction f .

Exemple 1.
La fonction inverse :

f : ]−∞, 0[∪ ]0,+∞[ −→ R

x 7−→
1
x

.

Le graphe d’une fonction f : U → R est la partie Γ f de R2 définie par Γ f =
�

(x , f (x)) | x ∈ U
	

.
Le graphe d’une fonction (à gauche), l’exemple du graphe de x 7→ 1

x (à droite).

x

f (x)
(x , f (x))

Γ f

x

y

1
x

1.2. Opérations sur les fonctions

Soient f : U → R et g : U → R deux fonctions définies sur une même partie U de R. On peut alors définir
les fonctions suivantes :

• la somme de f et g est la fonction f + g : U → R définie par ( f + g)(x) = f (x)+ g(x) pour tout x ∈ U ;

• le produit de f et g est la fonction f × g : U → R définie par ( f × g)(x) = f (x)× g(x) pour tout x ∈ U ;

• la multiplication par un scalaire λ ∈ R de f est la fonction λ · f : U → R définie par (λ · f )(x) = λ · f (x)
pour tout x ∈ U .

Comment tracer le graphe d’une somme de fonction ?

x

f (x)

g(x)

( f + g)(x)

g
f

f + g
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1.3. Fonctions majorées, minorées, bornées

Définition 2.
Soient f : U → R et g : U → R deux fonctions. Alors :

• f ⩾ g si ∀x ∈ U f (x)⩾ g(x) ;
• f ⩾ 0 si ∀x ∈ U f (x)⩾ 0 ;

• f > 0 si ∀x ∈ U f (x)> 0 ;

• f est dite constante sur U si ∃a ∈ R ∀x ∈ U f (x) = a ;

• f est dite nulle sur U si ∀x ∈ U f (x) = 0.

Définition 3.
Soit f : U → R une fonction. On dit que :

• f est majorée sur U si ∃M ∈ R ∀x ∈ U f (x)⩽ M ;

• f est minorée sur U si ∃m ∈ R ∀x ∈ U f (x)⩾ m ;

• f est bornée sur U si f est à la fois majorée et minorée sur U , c’est-à-dire si ∃M ∈ R ∀x ∈ U | f (x)|⩽
M .

Voici le graphe d’une fonction bornée (minorée par m et majorée par M).

x

y

M

m

1.4. Fonctions croissantes, décroissantes

Définition 4.
Soit f : U → R une fonction. On dit que :

• f est croissante sur U si ∀x , y ∈ U x ⩽ y =⇒ f (x)⩽ f (y)
• f est strictement croissante sur U si ∀x , y ∈ U x < y =⇒ f (x)< f (y)
• f est décroissante sur U si ∀x , y ∈ U x ⩽ y =⇒ f (x)⩾ f (y)
• f est strictement décroissante sur U si ∀x , y ∈ U x < y =⇒ f (x)> f (y)
• f est monotone (resp. strictement monotone) sur U si f est croissante ou décroissante (resp.

strictement croissante ou strictement décroissante) sur U .

Un exemple de fonction croissante (et même strictement croissante) :
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x y

f (x)

f (y)

Exemple 2.

• La fonction racine carrée

(

[0,+∞[−→ R

x 7−→
p

x
est strictement croissante.

• Les fonctions exponentielle exp : R→ R et logarithme ln :]0,+∞[→ R sont strictement croissantes.

• La fonction valeur absolue

(

R −→ R

x 7−→ |x |
n’est ni croissante, ni décroissante. Par contre, la fonction

(

[0,+∞[−→ R

x 7−→ |x |
est strictement croissante.

1.5. Parité et périodicité

Définition 5.
Soit I un intervalle de R symétrique par rapport à 0 (c’est-à-dire de la forme ]− a, a[ ou [−a, a] ou R).
Soit f : I → R une fonction définie sur cet intervalle. On dit que :

• f est paire si ∀x ∈ I f (−x) = f (x),
• f est impaire si ∀x ∈ I f (−x) = − f (x).

Interprétation graphique :

• f est paire si et seulement si son graphe est symétrique par rapport à l’axe des ordonnées (figure de
gauche).

• f est impaire si et seulement si son graphe est symétrique par rapport à l’origine (figure de droite).

x

y

x

y

Exemple 3.

• La fonction définie sur R par x 7→ x2n (n ∈ N) est paire.

• La fonction définie sur R par x 7→ x2n+1 (n ∈ N) est impaire.
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Définition 6.
Soit f : R→ R une fonction et T un nombre réel, T > 0. La fonction f est dite périodique de période T
si ∀x ∈ R f (x + T ) = f (x).

x x + Ti⃗

f
f (x) = f (x + T )

Interprétation graphique : f est périodique de période T si et seulement si son graphe est invariant par la
translation de vecteur T i⃗, où i⃗ est le premier vecteur de coordonnées.

Exemple 4.
Les fonctions sinus et cosinus sont 2π-périodiques. La fonction tangente est π-périodique.

x

y

cos x

sin x
0 π 2π−π 3π

+1

−1

Mini-exercices.

1. Soit U =]−∞, 0[ et f : U → R définie par f (x) = 1/x . f est-elle monotone? Et sur U =]0,+∞[?
Et sur U =]−∞, 0[∪ ]0,+∞[?

2. Pour deux fonctions paires que peut-on dire sur la parité de la somme ? du produit ? et de la composée ?
Et pour deux fonctions impaires ? Et si l’une est paire et l’autre impaire ?

3. On note {x} = x − E(x) la partie fractionnaire de x . Tracer le graphe de la fonction x 7→ {x} et
montrer qu’elle est périodique.

4. Soit f : R→ R la fonction définie par f (x) = x
1+x2 . Montrer que | f | est majorée par 1

2 , étudier les
variations de f (sans utiliser de dérivée) et tracer son graphe.

2. Limites

2.1. Limite en un point

Soit f : I → R une fonction définie sur un intervalle I de R. Soit x0 ∈ R un point de I ou une extrémité de I .

Définition 7.
Soit ℓ ∈ R. On dit que f a pour limite ℓ en x0 si

∀ε > 0 ∃δ > 0 ∀x ∈ I |x − x0|< δ =⇒ | f (x)− ℓ|< ε

On dit aussi que f (x) tend vers ℓ lorsque x tend vers x0. On note alors lim
x→x0

f (x) = ℓ ou bien lim
x0

f = ℓ.
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x

y

x0

ℓ

ε

ε

δ

Remarque.

• L’inégalité |x − x0| < δ équivaut à x ∈]x0 − δ, x0 + δ[. L’inégalité | f (x)− ℓ| < ε équivaut à f (x) ∈
]ℓ− ε,ℓ+ ε[.

• On peut remplacer certaines inégalités strictes «< » par des inégalités larges « ⩽ » dans la définition :
∀ε > 0 ∃δ > 0 ∀x ∈ I |x − x0|⩽ δ =⇒ | f (x)− ℓ|⩽ ε

• Dans la définition de la limite

∀ε > 0 ∃δ > 0 ∀x ∈ I |x − x0|< δ =⇒ | f (x)− ℓ|< ε

le quantificateur ∀x ∈ I n’est là que pour être sûr que l’on puisse parler de f (x). Il est souvent omis et
l’existence de la limite s’écrit alors juste :

∀ε > 0 ∃δ > 0 |x − x0|< δ =⇒ | f (x)− ℓ|< ε.

• N’oubliez pas que l’ordre des quantificateurs est important, on ne peut pas échanger le ∀ε avec le ∃δ :
le δ dépend en général du ε. Pour marquer cette dépendance on peut écrire : ∀ε > 0 ∃δ(ε)> 0 . . .

Exemple 5.

• lim
x→x0

p
x =

p

x0 pour tout x0 ⩾ 0,

• la fonction partie entière E n’a pas de limite aux points x0 ∈ Z.

x

y

1

0 1

p
x

x0

p
x0

x

y

1

0 1

E(x)

x0 ∈ Z

Soit f une fonction définie sur un ensemble de la forme ]a, x0[∪]x0, b[.

Définition 8.
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• On dit que f a pour limite +∞ en x0 si

∀A> 0 ∃δ > 0 ∀x ∈ I |x − x0|< δ =⇒ f (x)> A

On note alors lim
x→x0

f (x) = +∞.

• On dit que f a pour limite −∞ en x0 si

∀A> 0 ∃δ > 0 ∀x ∈ I |x − x0|< δ =⇒ f (x)< −A

On note alors lim
x→x0

f (x) = −∞.

x

y

A

x0 −δ
x0 +δ

x0

2.2. Limite en l’infini

Soit f : I → R une fonction définie sur un intervalle de la forme I =]a,+∞[.

Définition 9.

• Soit ℓ ∈ R. On dit que f a pour limite ℓ en +∞ si

∀ε > 0 ∃B > 0 ∀x ∈ I x > B =⇒ | f (x)− ℓ|< ε

On note alors lim
x→+∞

f (x) = ℓ ou lim
+∞

f = ℓ.

• On dit que f a pour limite +∞ en +∞ si

∀A> 0 ∃B > 0 ∀x ∈ I x > B =⇒ f (x)> A

On note alors lim
x→+∞

f (x) = +∞.

On définirait de la même manière la limite en −∞ pour des fonctions définies sur les intervalles du type
]−∞, a[.

x

y

ℓ
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Exemple 6.
On a les limites classiques suivantes pour tout n ⩾ 1 :

• lim
x→+∞

xn = +∞ et lim
x→−∞

xn =

(

+∞ si n est pair

−∞ si n est impair

• lim
x→+∞

�

1
xn

�

= 0 et lim
x→−∞

�

1
xn

�

= 0.

Exemple 7.
Soit P(x) = an xn + an−1 xn−1 + · · ·+ a1 x + a0 avec an > 0 et Q(x) = bm xm + bm−1 xm−1 + · · ·+ b1 x + b0

avec bm > 0.

lim
x→+∞

P(x)
Q(x)

=











+∞ si n> m
an
bm

si n= m

0 si n< m

2.3. Limite à gauche et à droite

Soit f une fonction définie sur un ensemble de la forme ]a, x0[∪]x0, b[.

Définition 10.

• On appelle limite à droite en x0 de f la limite de la fonction f�
�]x0,b[

en x0 et on la note lim
x+0

f .

• On définit de même la limite à gauche en x0 de f : la limite de la fonction f�
�]a,x0[

en x0 et on la note

lim
x−0

f .

• On note aussi lim
x→x0
x>x0

f (x) pour la limite à droite et lim
x→x0
x<x0

f (x) pour la limite à gauche.

Dire que f : I → R admet une limite ℓ ∈ R à droite en x0 signifie donc :

∀ε > 0 ∃δ > 0 x0 < x < x0 +δ =⇒ | f (x)− ℓ|< ε

Si la fonction f a une limite en x0, alors ses limites à gauche et à droite en x0 coïncident et valent lim
x0

f .

Réciproquement, si f a une limite à gauche et une limite à droite en x0 et si ces limites valent f (x0) (si f
est bien définie en x0) alors f admet une limite en x0.

Exemple 8.
Considérons la fonction partie entière au point x = 2 :

• comme pour tout x ∈]2,3[ on a E(x) = 2, on a lim
2+

E = 2 ,

• comme pour tout x ∈ [1, 2[ on a E(x) = 1, on a lim
2−

E = 1.

Ces deux limites étant différentes, on en déduit que E n’a pas de limite en 2.

x

y

0

E(x)

2

limite à gauche lim2− E

limite à droite lim2+ E
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2.4. Propriétés

Proposition 1.

Si une fonction admet une limite, alors cette limite est unique.

On ne donne pas la démonstration de cette proposition, qui est très similaire à celle de l’unicité de la limite
pour les suites (un raisonnement par l’absurde).

Soient deux fonctions f et g. On suppose que x0 est un réel, ou que x0 = ±∞.

Proposition 2.
Si lim

x0
f = ℓ ∈ R et lim

x0
g = ℓ′ ∈ R, alors :

• lim
x0
(λ · f ) = λ · ℓ pour tout λ ∈ R

• lim
x0
( f + g) = ℓ+ ℓ′

• lim
x0
( f × g) = ℓ× ℓ′

• si ℓ ̸= 0, alors lim
x0

1
f
=

1
ℓ

De plus, si lim
x0

f = +∞ (ou −∞) alors lim
x0

1
f
= 0.

Cette proposition se montre de manière similaire à la proposition analogue sur les limites de suites. Nous
n’allons donc pas donner la démonstration de tous les résultats.

Démonstration. Montrons par exemple que si f tend en x0 vers une limite ℓ non nulle, alors 1
f est bien

définie dans un voisinage de x0 et tend vers 1
ℓ .

Supposons ℓ > 0, le cas ℓ < 0 se montrerait de la même manière. Montrons tout d’abord que 1
f est bien

définie et est bornée dans un voisinage de x0 contenu dans l’intervalle I . Par hypothèse

∀ε′ > 0 ∃δ > 0 ∀x ∈ I x0 −δ < x < x0 +δ =⇒ ℓ− ε′ < f (x)< ℓ+ ε′.

Si on choisit ε′ tel que 0< ε′ < ℓ/2, alors on voit qu’il existe un intervalle J = I∩ ]x0 −δ, x0 +δ[ tel que
pour tout x dans J , f (x)> ℓ/2> 0, c’est-à-dire, en posant M = 2/ℓ :

∀x ∈ J 0<
1

f (x)
< M .

Fixons à présent ε > 0. Pour tout x ∈ J , on a
�

�

�

�

1
f (x)
−

1
ℓ

�

�

�

�

=
|ℓ− f (x)|

f (x)ℓ
<

M
ℓ
|ℓ− f (x)| .

Donc, si dans la définition précédente de la limite de f en x0 on choisit ε′ = ℓε
M , alors on trouve qu’il existe

un δ > 0 tel que

∀x ∈ J x0 −δ < x < x0 +δ =⇒
�

�

�

�

1
f (x)
−

1
ℓ

�

�

�

�

<
M
ℓ
|ℓ− f (x)|<

M
ℓ
ε′ = ε.

Proposition 3.
Si lim

x0
f = ℓ et lim

ℓ
g = ℓ′, alors lim

x0
g ◦ f = ℓ′.

Ce sont des propriétés que l’on utilise sans s’en apercevoir !
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Exemple 9.
Soit x 7→ u(x) une fonction et x0 ∈ R tel que u(x)→ 2 lorsque x → x0. Posons f (x) =

Ç

1+ 1
u(x)2 + ln u(x).

Si elle existe, quelle est la limite de f en x0 ?

• Tout d’abord comme u(x)→ 2 alors u(x)2→ 4 donc 1
u(x)2 →

1
4 (lorsque x → x0).

• De même comme u(x)→ 2 alors, dans un voisinage de x0, u(x)> 0 donc ln u(x) est bien définie dans
ce voisinage et de plus ln u(x)→ ln 2 (lorsque x → x0).

• Cela entraîne que 1+ 1
u(x)2 + ln u(x)→ 1+ 1

4 + ln 2 lorsque x → x0. En particulier 1+ 1
u(x)2 + ln u(x)⩾ 0

dans un voisinage de x0, donc f (x) est bien définie dans un voisinage de x0.

• Et par composition avec la racine carrée alors f (x) a bien une limite en x0 et limx→x0
f (x) =

q

1+ 1
4 + ln2.

Il y a des situations où l’on ne peut rien dire sur les limites. Par exemple si limx0
f = +∞ et limx0

g = −∞
alors on ne peut à priori rien dire sur la limite de f + g (cela dépend vraiment de f et de g). On raccourcit
cela en +∞−∞ est une forme indéterminée.

Voici une liste de formes indéterminées : +∞−∞ ; 0×∞ ;
∞
∞

;
0
0

; 1∞ ;∞0.

Enfin voici une proposition très importante qui signifie qu’on peut passer à la limite dans une inégalité large.

Proposition 4.

• Si f ⩽ g et si lim
x0

f = ℓ ∈ R et lim
x0

g = ℓ′ ∈ R, alors ℓ⩽ ℓ′.

• Si f ⩽ g et si lim
x0

f = +∞, alors lim
x0

g = +∞.

• Théorème des gendarmes

Si f ⩽ g ⩽ h et si lim
x0

f = lim
x0

h= ℓ ∈ R, alors g a une limite en x0 et lim
x0

g = ℓ.

x0

f

h

glimx0
f = limx0

g = limx0
h

Mini-exercices.

1. Déterminer, si elle existe, la limite de 2x2−x−2
3x2+2x+2 en 0. Et en +∞?

2. Déterminer, si elle existe, la limite de sin
� 1

x

�

en +∞. Et pour cos xp
x ?

3. En utilisant la définition de la limite (avec des ε), montrer que limx→2(3x + 1) = 7.

4. Montrer que si f admet une limite finie en x0 alors il existe δ > 0 tel que f soit bornée sur ]x0 −
δ, x0 +δ[.

5. Déterminer, si elle existe, limx→0

p
1+x−

p
1+x2

x . Et limx→2
x2−4

x2−3x+2 ?
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3. Continuité en un point

3.1. Définition

Soit I un intervalle de R et f : I → R une fonction.

Définition 11.

• On dit que f est continue en un point x0 ∈ I si

∀ε > 0 ∃δ > 0 ∀x ∈ I |x − x0|< δ =⇒ | f (x)− f (x0)|< ε

c’est-à-dire si f admet une limite en x0, cette limite vaut alors nécessairement f (x0).
• On dit que f est continue sur I si f est continue en tout point de I .

x

y

x0

f (x0)
ε

ε

δ

Intuitivement, une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever le
crayon », c’est-à-dire si sa courbe représentative n’admet pas de saut.
Voici des fonctions qui ne sont pas continues en x0 :

x

y

x0 x

y

x0 x

y

x0

Exemple 10.
Les fonctions suivantes sont continues :

• une fonction constante sur un intervalle,

• la fonction racine carrée x 7→
p

x sur [0,+∞[,
• les fonctions sin et cos sur R,

• la fonction valeur absolue x 7→ |x | sur R,

• la fonction exp sur R,

• la fonction ln sur ]0,+∞[.
A l’inverse, la fonction partie entière E n’est pas continue aux points x0 ∈ Z, puisqu’elle n’admet pas de
limite en ces points. Pour x0 ∈ R \Z, elle est continue en x0.



LIMITES ET CONTINUITÉ 3. CONTINUITÉ EN UN POINT 72

3.2. Propriétés

La continuité assure par exemple que si la fonction n’est pas nulle en un point (qui est une propriété
ponctuelle) alors elle n’est pas nulle autour de ce point (propriété locale). Voici l’énoncé :

Lemme 1.
Soit f : I → R une fonction définie sur un intervalle I et x0 un point de I. Si f est continue en x0 et si
f (x0) ̸= 0, alors il existe δ > 0 tel que

∀x ∈]x0 −δ, x0 +δ[ f (x) ̸= 0

x0

f (x0)

x0 −δ x0 +δ

Démonstration. Supposons par exemple que f (x0)> 0, le cas f (x0)< 0 se montrerait de la même manière.
Écrivons ainsi la définition de la continuité de f en x0 :

∀ε > 0 ∃δ > 0 ∀x ∈ I x ∈ ]x0 −δ, x0 +δ[ =⇒ f (x0)− ε < f (x)< f (x0) + ε.

Il suffit donc de choisir ε tel que 0< ε < f (x0). Il existe alors bien un intervalle J = I∩ ]x0 −δ, x0 +δ[ tel
que pour tout x dans J , on a f (x)> 0.

La continuité se comporte bien avec les opérations élémentaires. Les propositions suivantes sont des
conséquences immédiates des propositions analogues sur les limites.

Proposition 5.
Soient f , g : I → R deux fonctions continues en un point x0 ∈ I . Alors

• λ · f est continue en x0 (pour tout λ ∈ R),

• f + g est continue en x0,

• f × g est continue en x0,

• si f (x0) ̸= 0, alors 1
f est continue en x0.

Exemple 11.
La proposition précédente permet de vérifier que d’autres fonctions usuelles sont continues :

• les fonctions puissance x 7→ xn sur R (comme produit x × x × · · · ),
• les polynômes sur R (somme et produit de fonctions puissance et de fonctions constantes),

• les fractions rationnelles x 7→ P(x)
Q(x) sur tout intervalle où le polynôme Q(x) ne s’annule pas.

La composition conserve la continuité (mais il faut faire attention en quels points les hypothèses s’appliquent).

Proposition 6.
Soient f : I → R et g : J → R deux fonctions telles que f (I) ⊂ J. Si f est continue en un point x0 ∈ I et si g
est continue en f (x0), alors g ◦ f est continue en x0.
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3.3. Prolongement par continuité

Définition 12.
Soit I un intervalle, x0 un point de I et f : I \ {x0} → R une fonction.

• On dit que f est prolongeable par continuité en x0 si f admet une limite finie en x0. Notons alors
ℓ= lim

x0
f .

• On définit alors la fonction f̃ : I → R en posant pour tout x ∈ I

f̃ (x) =

(

f (x) si x ̸= x0

ℓ si x = x0.

Alors f̃ est continue en x0 et on l’appelle le prolongement par continuité de f en x0.

x

y

x0

ℓ

Dans la pratique, on continuera souvent à noter f à la place de f̃ .

Exemple 12.
Considérons la fonction f définie sur R∗ par f (x) = x sin

� 1
x

�

. Voyons si f admet un prolongement par
continuité en 0?
Comme pour tout x ∈ R∗ on a | f (x)|⩽ |x |, on en déduit que f tend vers 0 en 0. Elle est donc prolongeable
par continuité en 0 et son prolongement est la fonction f̃ définie sur R tout entier par :

f̃ (x) =

(

x sin
� 1

x

�

si x ̸= 0

0 si x = 0.

3.4. Suites et continuité

Proposition 7.
Soit f : I → R une fonction et x0 un point de I. Alors :

f est continue en x0 ⇐⇒
pour toute suite (un) qui converge vers x0

la suite ( f (un)) converge vers f (x0)

Démonstration.
=⇒ On suppose que f est continue en x0 et que (un) est une suite qui converge vers x0 et on veut montrer

que ( f (un)) converge vers f (x0).
Soit ε > 0. Comme f est continue en x0, il existe un δ > 0 tel que

∀x ∈ I |x − x0|< δ =⇒ | f (x)− f (x0)|< ε.

Pour ce δ, comme (un) converge vers x0, il existe N ∈ N tel que

∀n ∈ N n ⩾ N =⇒ |un − x0|< δ.
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On en déduit que, pour tout n ⩾ N , comme |un − x0|< δ, on a | f (un)− f (x0)|< ε. Comme c’est vrai
pour tout ε > 0, on peut maintenant conclure que ( f (un)) converge vers f (x0).
⇐= On va montrer la contraposée : supposons que f n’est pas continue en x0 et montrons qu’alors il existe

une suite (un) qui converge vers x0 et telle que ( f (un)) ne converge pas vers f (x0).
Par hypothèse, comme f n’est pas continue en x0 :

∃ε0 > 0 ∀δ > 0 ∃xδ ∈ I tel que |xδ − x0|< δ et | f (xδ)− f (x0)|> ε0.

On construit la suite (un) de la façon suivante : pour tout n ∈ N∗, on choisit dans l’assertion précédente
δ = 1/n et on obtient qu’il existe un (qui est x1/n) tel que

|un − x0|<
1
n

et | f (un)− f (x0)|> ε0.

La suite (un) converge vers x0 alors que la suite ( f (un)) ne peut pas converger vers f (x0).

Remarque.
On retiendra surtout l’implication : si f est continue sur I et si (un) est une suite convergente de limite ℓ, alors
( f (un)) converge vers f (ℓ). On l’utilisera intensivement pour l’étude des suites récurrentes un+1 = f (un) : si
f est continue et un→ ℓ, alors f (ℓ) = ℓ.

Mini-exercices.

1. Déterminer le domaine de définition et de continuité des fonctions suivantes : f (x) = 1/ sin x ,
g(x) = 1/

q

x + 1
2 , h(x) = ln(x2 + x − 1).

2. Trouver les couples (a, b) ∈ R2 tels que la fonction f définie sur R par f (x) = ax + b si x < 0 et
f (x) = exp(x) si x ⩾ 0 soit continue sur R. Et si on avait f (x) = a

x−1 + b pour x < 0?

3. Soit f une fonction continue telle que f (x0) = 1. Montrer qu’il existe δ > 0 tel que : pour tout
x ∈]x0 −δ, x0 +δ[ f (x)> 1

2 .

4. Étudier la continuité de f : R→ R définie par : f (x) = sin(x) cos
� 1

x

�

si x ̸= 0 et f (0) = 0. Et pour
g(x) = x E(x)?

5. La fonction définie par f (x) = x3+8
|x+2| admet-elle un prolongement par continuité en −2 ?

6. Soit la suite définie par u0 > 0 et un+1 =
p

un. Montrer que (un) admet une limite ℓ ∈ R lorsque
n→ +∞. À l’aide de la fonction f (x) =

p
x calculer cette limite.

4. Continuité sur un intervalle

4.1. Le théorème des valeurs intermédiaires

Théorème 1 (Théorème des valeurs intermédiaires).
Soit f : [a, b]→ R une fonction continue sur un segment.

Pour tout réel y compris entre f (a) et f (b),
il existe c ∈ [a, b] tel que f (c) = y.

Une illustration du théorème des valeurs intermédiaires (figure de gauche), le réel c n’est pas nécessairement
unique. De plus si la fonction n’est pas continue, le théorème n’est plus vrai (figure de droite).
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x

y

a
f (a)

b

f (b)

y

c1 c2 c3
x

y

a
f (a)

b

f (b)

y

Démonstration. Montrons le théorème dans le cas où f (a) < f (b). On considère alors un réel y tel que
f (a)⩽ y ⩽ f (b) et on veut montrer qu’il a un antécédent par f .

1. On introduit l’ensemble suivant

A=
¦

x ∈ [a, b] | f (x)⩽ y
©

.

Tout d’abord l’ensemble A est non vide (car a ∈ A) et il est majoré (car il est contenu dans [a, b]) : il
admet donc une borne supérieure, que l’on note c = sup A. Montrons que f (c) = y .

x

y

a

f (a)

b

f (b)

y

c = sup(A)A

2. Montrons tout d’abord que f (c)⩽ y . Comme c = sup A, il existe une suite (un)n∈N contenue dans A telle
que (un) converge vers c. D’une part, pour tout n ∈ N, comme un ∈ A, on a f (un) ⩽ y. D’autre part,
comme f est continue en c, la suite ( f (un)) converge vers f (c). On en déduit donc, par passage à la
limite, que f (c)⩽ y .

3. Montrons à présent que f (c) ⩾ y. Remarquons tout d’abord que si c = b, alors on a fini, puisque
f (b)⩾ y . Sinon, pour tout x ∈]c, b], comme x /∈ A, on a f (x)> y . Or, étant donné que f est continue
en c, f admet une limite à droite en c, qui vaut f (c) et on obtient f (c)⩾ y .

4.2. Applications du théorème des valeurs intermédiaires

Voici la version la plus utilisée du théorème des valeurs intermédiaires.

Corollaire 1.
Soit f : [a, b]→ R une fonction continue sur un segment.

Si f (a) · f (b)< 0, alors il existe c ∈]a, b[ tel que f (c) = 0.
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x

y

a

f (a)< 0

b

f (b)> 0

c

Démonstration. Il s’agit d’une application directe du théorème des valeurs intermédiaires avec y = 0.
L’hypothèse f (a) · f (b)< 0 signifiant que f (a) et f (b) sont de signes contraires.

Exemple 13.
Tout polynôme de degré impair possède au moins une racine réelle.

x

y x 7→ P(x)

En effet, un tel polynôme s’écrit P(x) = an xn + · · ·+ a1 x + a0 avec n un entier impair. On peut supposer
que le coefficient an est strictement positif. Alors on a lim

−∞
P = −∞ et lim

+∞
P = +∞. En particulier, il existe

deux réels a et b tels que f (a)< 0 et f (b)> 0 et on conclut grâce au corollaire précédent.

Voici une formulation théorique du théorème des valeurs intermédiaires.

Corollaire 2.

Soit f : I → R une fonction continue sur un intervalle I .
Alors f (I) est un intervalle.

Attention ! Il serait faux de croire que l’image par une fonction f de l’intervalle [a, b] soit l’intervalle
[ f (a), f (b)] (voir la figure ci-dessous).

x

y

a

f (b)

b

f (a)

f ([a, b])

Démonstration. Soient y1, y2 ∈ f (I), y1 ⩽ y2. Montrons que si y ∈ [y1, y2], alors y ∈ f (I). Par hypothèse,
il existe x1, x2 ∈ I tels que y1 = f (x1), y2 = f (x2) et donc y est compris entre f (x1) et f (x2). D’après le
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théorème des valeurs intermédiaires, comme f est continue, il existe donc x ∈ I tel que y = f (x), et ainsi
y ∈ f (I).

4.3. Fonctions continues sur un segment

Théorème 2.
Soit f : [a, b] → R une fonction continue sur un segment. Alors il existe deux réels m et M tels que
f ([a, b]) = [m, M]. Autrement dit, l’image d’un segment par une fonction continue est un segment.

x

y

a b

m

M

Comme on sait déjà par le théorème des valeurs intermédiaires que f ([a, b]) est un intervalle, le théorème
précédent signifie exactement que

Si f est continue sur [a, b]
alors f est bornée sur [a, b], et elle atteint ses bornes.

Donc m est le minimum de la fonction sur l’intervalle [a, b] alors que M est le maximum.

Démonstration.

1. Montrons d’abord que f est bornée.

• Pour r ∈ R, on note Ar = {x ∈ [a, b] | f (x) ⩾ r}. Fixons r tel que Ar ̸= ∅, comme Ar ⊂ [a, b], le
nombre s = sup Ar existe. Soit xn→ s avec xn ∈ Ar . Par définition f (xn)⩾ r donc, f étant continue,
à la limite f (s)⩾ r et ainsi s ∈ Ar .

• Supposons par l’absurde que f ne soit pas bornée. Alors pour tout n ⩾ 0, An est non vide. Notons
sn = sup An. Comme f (x) ⩾ n+ 1 implique f (x) ⩾ n alors An+1 ⊂ An, ce qui entraîne sn+1 ⩽ sn.
Bilan : (sn) est une suite décroissante, minorée par a donc converge vers ℓ ∈ [a, b]. Encore une fois
f est continue donc sn → ℓ, implique f (sn) → f (ℓ). Mais f (sn) ⩾ n donc lim f (sn) = +∞. Cela
contredit lim f (sn) = f (ℓ)< +∞. Conclusion : f est majorée.

• Un raisonnement tout à fait similaire prouve que f est aussi minorée, donc bornée. Par ailleurs on
sait déjà que f (I) est un intervalle (c’est le théorème des valeurs intermédiaires), donc maintenant
f (I) est un intervalle borné. Il reste à montrer qu’il du type [m, M] (et pas ]m, M[ par exemple).

2. Montrons maintenant que f (I) est un intervalle fermé. Sachant déjà que f (I) est un intervalle borné,
notons m et M ses extrémités : m = inf f (I) et M = sup f (I). Supposons par l’absurde que M /∈ f (I).
Alors pour t ∈ [a, b], M > f (t). La fonction g : t 7→ 1

M− f (t) est donc bien définie. La fonction g est
continue sur I donc d’après le premier point de cette preuve (appliqué à g) elle est bornée, disons par
un réel K . Mais il existe yn→ M , yn ∈ f (I). Donc il existe xn ∈ [a, b] tel que yn = f (xn)→ M et alors
g(xn) =

1
M− f (xn)

→ +∞. Cela contredit que g soit une fonction bornée par K. Bilan : M ∈ f (I). De
même on a m ∈ f (I). Conclusion finale : f (I) = [m, M].
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Mini-exercices.

1. Soient P(x) = x5 − 3x − 2 et f (x) = x2x − 1 deux fonctions définies sur R. Montrer que l’équation
P(x) = 0 a au moins une racine dans [1,2] ; l’équation f (x) = 0 a au moins une racine dans [0,1] ;
l’équation P(x) = f (x) a au moins une racine dans ]0,2[.

2. Montrer qu’il existe x > 0 tel que 2x + 3x = 7x .

3. Dessiner le graphe d’une fonction continue f : R → R tel que f (R) = [0,1]. Puis f (R) =]0,1[ ;
f (R) = [0, 1[ ; f (R) =]−∞, 1], f (R) =]−∞, 1[.

4. Soient f , g : [0,1]→ R deux fonctions continues. Quelles sont, parmi les fonctions suivantes, celles
dont on peut affirmer qu’elles sont bornées : f + g, f × g, f /g ?

5. Soient f et g deux fonctions continues sur [0,1] telles que ∀x ∈ [0,1] f (x) < g(x). Montrer qu’il
existe m> 0 tel que ∀x ∈ [0, 1] f (x) +m< g(x). Ce résultat est-il vrai si on remplace [0, 1] par R?

5. Exercices

TD

Exercice 50
Déterminer les limites des fonctions suivantes :

1. limx→∞
x2

ex

2. limx→∞
ln x

x

3. limx→∞
ex+3x2

4ex+2x2

4. limx→1
3x ln x
x2−x

Exercice 51
Identifier les limites suivantes :

1. limx→∞
2x+5
x2−3

2. limx→∞
x3−4x2+8

x2+6

3. limx→∞
ax2+bx+c
kx2+l x+m

4. limx→−4
x2−16
x+4

5. limx→0+
|x |
x et limx→0−

|x |
x

6. limx→∞
p

x2 + 1−
p

x2 − 1

7. limx→∞
p

x2 + 4x − x

8. limx→−2
x3+2x2−x−2

x2−4

Exercice 52
Soit la fonction à valeurs réelles définie par morceaux :

f (x) =











6x + 8 si x ⩽ −1

−3x + 7 si − 1< x < 2

x − 1 sinon.
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Cette fonction est-elle continue sur R?

Exercice 53
Soit la fonction à valeurs réelles définie par morceaux :

f (x) =

¨

ax2 + bx + 1 si x ⩽ 2

x2 + ax + b sinon.

Donner les conditions sur les paramètres a et b pour que la fonction soit continue sur R?

Exercice 54
Soit la fonction f sur R à valeurs réelles, définie par :

f (x) =

¨

1
ln |x | si x /∈ {−1,0, 1}
0 sinon

En quels points la fonction f est-elle continue?

Exercice 55
Soit la fonction définie sur R \ {−1} :

f (x) =
1+ x
x3 + 1

Cette fonction est-elle continue en -1 ? Est-il possible de la prolonger par continuité en -1?

Exercice 56
En utilisant la définition de la dérivée, calculer les dérivées des fonctions suivantes :

1. f (x) = 4x2 + 3

2. g(x) = xn, ∀n ∈ N et ∀x ∈ R

3. h(x) = 1
x , ∀x ∈ R⋆

4. j(x) =
p

1+ x

Pour g(x) vous utiliserez la formule du binôme de Newton :

(a+ b)n =
n
∑

k=0

C k
n an−k bk

avec

C k
n =

n!
k!(n− k)!

où m!= m× (m− 1)× (m− 2)× · · · × 3× 2× 1 la fonction factorielle.

Entraînement

Exercice 57
Déterminer les limites des fonctions suivantes :

1. limx→1 x2 − 3x + 7

2. limx→1
x2−1
x−1

3. limx→1
x3−8x2+19x−12

x2−3x+2

4. limx→1
x2−3x+2

x3−1
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Exercice 58
Soit la fonction f définie sur R. Etudier sa continuité sur R.

f (x) =



















1
x2

e1/x ∀x ∈ ]−∞,−1/2]
4
e2

∀x ∈ ]−1/2, 1]
4
e2
+ ln x ∀x ∈ ]1,+∞]

Exercice 59
Même question pour :

f (x) =

¨

e1/(x2−1) ∀x ∈ ]−1, 1[

0 ∀x ∈ ]−∞,−1]∪ [1,+∞[

Exercice 60
Même question pour :

f (x) =







1
b− a

si x ∈ [a, b]

0 sinon .
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Dérivée d’une
fonction d’une variable

Chapitre

6

Motivation

La dérivée revient à calculer des taux d’accroissement pour des variations infinitésimales. Cette approche
fonde l’essentiel des raisonnements en économie : c’est l’approche marginaliste.
Dans ce chapitre, nous allons donc définir ce qu’est la dérivée d’une fonction (à une variable) et établir les
formules des dérivées pour les fonctions usuelles.
Nous présenterons ensuite la dérivée comme l’outil permettant de trouver le sens de variation d’une
fonction ainsi que les points extrêmes (maximum ou mininum), qui sont très importants pour résoudre
des problèmes d’optimisation en économie ou statistique ou pour étudier le comportement d’une fonction.
Enfin, nous présenterons la dérivée comme un outil fondamental pour l’approximation plus ou moins fine
de fonction au voisinage d’un point.

1. Dérivée

1.1. Dérivée en un point et fonction dérivée

Soit I un intervalle ouvert de R et f : I → R une fonction. Soit x0 ∈ I .

Définition 1.

f est dérivable en x0 si le taux d’accroissement
f (x)− f (x0)

x − x0
a une limite finie lorsque x tend vers x0.

La limite s’appelle alors le nombre dérivé de f en x0 et est noté f ′(x0). Ainsi

f ′(x0) = lim
x→x0

f (x)− f (x0)
x − x0

= lim
h→0

f (x0 + h)− f (x0)
h

Définition 2.
f est dérivable sur I si f est dérivable en tout point x0 ∈ I . La fonction x 7→ f ′(x) est la fonction dérivée

de f , elle se note f ′ ou
d f
d x

.

f ′(x) =
d f
d x
(x) = lim

h→0

f (x + h)− f (x)
h

Exemple 1.
La fonction définie par f (x) = x2 est dérivable en tout point x0 ∈ R. En effet :

f (x)− f (x0)
x − x0

=
x2 − x2

0

x − x0
=
(x − x0)(x + x0)

x − x0
= x + x0 −−−→x→x0

2x0.
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On a même montré que le nombre dérivé de f en x0 est 2x0, autrement dit : f ′(x) = 2x .

1.2. Interprétation géométrique : la tangente à la fonction

La droite qui passe par les points distincts (x0, f (x0)) et (x , f (x)) a pour coefficient directeur
f (x)− f (x0)

x − x0
.

À la limite (x tend vers x0 ou le point M se rapproche de M0 en suivant la fonction), le coefficient directeur
de la tangente est égal à f ′(x0). Une équation de la tangente au point (x0, f (x0)) est donc :

y = (x − x0) f ′(x0) + f (x0)

M0

x0 x

M

1.3. Dérivée⇒ continuité... mais la réciproque est fausse

Voici deux autres formulations de la dérivabilité de f en x0.

Proposition 1.

• f est dérivable en x0 si et seulement si lim
h→0

f (x0 + h)− f (x0)
h

existe et est finie.

• f est dérivable en x0 si et seulement s’il existe ℓ ∈ R (qui sera f ′(x0)) et une fonction ε : I → R telle que
ε(x) −−−→

x→x0
0 avec

f (x) = f (x0) + (x − x0)ℓ+ (x − x0)ε(x).

Démonstration. Il s’agit juste de reformuler la définition de f ′(x0). Par exemple, après division par x − x0,
la deuxième écriture devient

f (x)− f (x0)
x − x0

= ℓ+ ε(x).

Proposition 2.
Soit I un intervalle ouvert, x0 ∈ I et soit f : I → R une fonction.

• Si f est dérivable en x0 alors f est continue en x0.

• Si f est dérivable sur I alors f est continue sur I.

Démonstration. Supposons f dérivable en x0 et montrons qu’elle est aussi continue en ce point. Voici une
démonstration concise : partant de l’écriture alternative donnée dans la proposition 1, nous écrivons

f (x) = f (x0) + (x − x0)ℓ
︸ ︷︷ ︸

→0

+(x − x0)ε(x)
︸ ︷︷ ︸

→0

.
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Donc f (x)→ f (x0) lorsque x → x0 et ainsi f est continue en x0.

On reprend cette démonstration sans utiliser les limites mais uniquement la définition de continuité et
dérivabilité : fixons ε′ > 0 et écrivons f (x) = f (x0) + (x − x0)ℓ+ (x − x0)ε(x) grâce à la proposition 1, où
ε(x) −−−→

x→x0
0 et ℓ= f ′(x0). Choisissons δ > 0 de sorte qu’il vérifie tous les points suivants :

• δ ⩽ 1,

• δ|ℓ|< ε′,
• si |x − x0|< δ alors |ε(x)|< ε′ (c’est possible car ε(x)→ 0).

Alors l’égalité ci-dessus devient :
�

� f (x)− f (x0)
�

�=
�

�(x − x0)ℓ+ (x − x0)ε(x)
�

�

⩽ |x − x0| · |ℓ|+ |x − x0| · |ε(x)|

⩽ δ|ℓ| + δε′ pour |x − x0|< δ

⩽ ε′ + ε′ = 2ε′

Nous venons de prouver que si |x − x0|< δ alors
�

� f (x)− f (x0)
�

�< 2ε′, ce qui exprime exactement que f
est continue en x0.

La réciproque est fausse. Prenons par exemple, la fonction valeur absolue, qui est continue en 0 mais n’est
pas dérivable en 0.

x

y

1

0 1

y = |x |

En effet, le taux d’accroissement de f (x) = |x | en x0 = 0 vérifie :

f (x)− f (0)
x − 0

=
|x |
x
=

(

+1 car |x |= x si x > 0

−1 car |x |= −x si x < 0
.

Il y a bien une limite à droite (qui vaut +1), une limite à gauche (qui vaut −1) mais elles ne sont pas égales :
il n’y a pas de limite en 0. Ainsi f n’est pas dérivable en x = 0.
Cela se lit aussi sur le dessin, il y a une demi-tangente à droite, une demi-tangente à gauche, mais elles ont
des directions différentes.

Cela nous permet d’introduire la définition suivante.

Définition 3.

f est dérivable à gauche en x0 si le taux d’accroissement
f (x)− f (x0)

x − x0
a une limite finie lorsque x

tend vers x−0 . La limite s’appelle alors le nombre dérivé à gauche de f en x0 et est noté f ′g(x0). Ainsi

f ′g(x0) = lim
x→x−0

f (x)− f (x0)
x − x0

= lim
h→0−

f (x0 + h)− f (x0)
h

f est dérivable à droite en x0 si le taux d’accroissement
f (x)− f (x0)

x − x0
a une limite finie lorsque x tend

vers x+0 . La limite s’appelle alors le nombre dérivé à droite de f en x0 et est noté f ′d(x0). Ainsi
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f ′d(x0) = lim
x→x+0

f (x)− f (x0)
x − x0

= lim
h→0+

f (x0 + h)− f (x0)
h

On dit qu’une fonction f est dérivable en x0 ssi : f ′g(x0) = f ′d(x0) = f ′(x0). On dit alors qu’elle est
continue en x0.

Mini-exercices.

1. Montrer que la fonction f (x) = x3 est dérivable en tout point x0 ∈ R et que f ′(x0) = 3x2
0 .

2. Montrer que la fonction f (x) =
p

x est dérivable en tout point x0 > 0 et que f ′(x0) =
1

2
p

x0
.

3. Montrer que la fonction f (x) =
p

x (qui est continue en x0 = 0) n’est pas dérivable en x0 = 0.

4. Calculer l’équation de la tangente (T0) à la courbe d’équation y = x3 − x2 − x au point d’abscisse
x0 = 2. Calculer x1 afin que la tangente (T1) au point d’abscisse x1 soit parallèle à (T0).

5. Montrer que si une fonction f est paire et dérivable, alors f ′ est une fonction impaire.

1.4. Opérations sur les dérivées

Proposition 3.
Soient f , g : I → R deux fonctions dérivables sur I. Alors pour tout x ∈ I :

( f + g)′(x) = f ′(x) + g ′(x)

(λ f )′(x) = λ f ′(x) où λ est un réel fixé

( f × g)′(x) = f ′(x)g(x) + f (x)g ′(x)

�

1
f

�′
(x) = −

f ′(x)
f (x)2

(si f (x) ̸= 0)

�

f
g

�′
(x) =

f ′(x)g(x)− f (x)g ′(x)
g(x)2

(si g(x) ̸= 0)

Remarque.
Il est plus facile de mémoriser les égalités de fonctions :

( f + g)′ = f ′ + g ′ (λ f )′ = λ f ′ ( f × g)′ = f ′g + f g ′

�

1
f

�′
= −

f ′

f 2

�

f
g

�′
=

f ′g − f g ′

g2

Démonstration. Prouvons par exemple ( f × g)′ = f ′g + f g ′.
Fixons x0 ∈ I . Nous allons réécrire le taux d’accroissement de f (x)× g(x) :

f (x)g(x)− f (x0)g(x0)
x − x0

=
f (x)− f (x0)

x − x0
g(x) +

g(x)− g(x0)
x − x0

f (x0)

−−−→
x→x0

f ′(x0)g(x0) + g ′(x0) f (x0).

Ceci étant vrai pour tout x0 ∈ I la fonction f × g est dérivable sur I de dérivée f ′g + f g ′.
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1.5. Dérivée de fonctions usuelles

Le tableau de gauche est un résumé des principales formules à connaître, x est une variable. Le tableau de
droite est celui des compositions (voir paragraphe suivant), u représente une fonction x 7→ u(x).

Fonction Dérivée

xn nxn−1 (n ∈ Z)
1
x

− 1
x2

p
x

1
2

1
p

x

xα αxα−1 (α ∈ R)

ex ex

ln x
1
x

Fonction Dérivée

un nu′un−1 (n ∈ Z)
1
u

−
u′

u2

p
u

1
2

u′
p

u

uα αu′uα−1 (α ∈ R)

eu u′eu

ln u
u′

u

Remarque.

• Notez que les formules pour xn, 1
x ,
p

x et xα sont aussi des conséquences de la dérivée de l’exponentielle.
Par exemple xα = eα ln x et donc

d
d x
(xα) =

d
d x
(eα ln x) = α

1
x

eα ln x = α
1
x

xα = αxα−1.

• Si vous devez dériver une fonction avec un exposant dépendant de x il faut absolument repasser à
la forme exponentielle. Par exemple si f (x) = 2x alors on réécrit d’abord f (x) = ex ln2 pour pouvoir
calculer f ′(x) = ln2 · ex ln 2 = ln 2 · 2x .

1.6. Composition de fonctions

Proposition 4.
Si f est dérivable en x et g est dérivable en f (x) alors g ◦ f est dérivable en x de dérivée :

�

g ◦ f
�′
(x) = g ′

�

f (x)
�

· f ′(x)

Démonstration. Faisons l’hypothèse que f (x) ̸= f (x0) pour x proche de x0 (avec x ̸= x0). La preuve est
alors similaire à celle ci-dessus pour le produit en écrivant cette fois :

g ◦ f (x)− g ◦ f (x0)
x − x0

=
g
�

f (x)
�

− g
�

f (x0)
�

f (x)− f (x0)
×

f (x)− f (x0)
x − x0

−−−→
x→x0

g ′
�

f (x0)
�

× f ′(x0).

Exemple 2.
Calculons la dérivée de ln(1+x2). Nous avons g(x) = ln(x) avec g ′(x) = 1

x et f (x) = 1+x2 avec f ′(x) = 2x .
Alors la dérivée de ln(1+ x2) = g ◦ f (x) est

�

g ◦ f
�′
(x) = g ′

�

f (x)
�

· f ′(x) = g ′
�

1+ x2
�

· 2x =
2x

1+ x2
.

Corollaire 1.
Soit I un intervalle ouvert. Soit f : I → J dérivable et bijective dont on note f −1 : J → I la bijection
réciproque. Si f ′ ne s’annule pas sur I alors f −1 est dérivable et on a pour tout x ∈ J :
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�

f −1
�′
(x) =

1

f ′
�

f −1(x)
�

Remarque.
Il peut être plus simple de retrouver la formule à chaque fois en dérivant l’égalité

f
�

g(x)
�

= x

où g = f −1 est la bijection réciproque de f .
En effet à droite la dérivée de x est 1 ; à gauche la dérivée de f

�

g(x)
�

= f ◦ g(x) est f ′
�

g(x)
�

· g ′(x).
L’égalité f

�

g(x)
�

= x conduit donc à l’égalité des dérivées :

f ′
�

g(x)
�

· g ′(x) = 1.

Mais g = f −1 donc
�

f −1
�′
(x) =

1

f ′
�

f −1(x)
� .

1.7. Dérivées successives

Soit f : I → R une fonction dérivable et soit f ′ sa dérivée. Si la fonction f ′ : I → R est aussi dérivable on
note f ′′ = ( f ′)′ la dérivée seconde de f . Plus généralement on note :

f (0) = f , f (1) = f ′, f (2) = f ′′ et f (n+1) =
�

f (n)
�′

Si la dérivée n-ième f (n) existe on dit que f est n fois dérivable.

Théorème 1 (Formule de Leibniz).

�

f · g
�(n)
= f (n) · g + C1

n f (n−1) · g(1) + · · ·+ Ck
n f (n−k) · g(k) + · · ·+ f · g(n)

Autrement dit :
�

f · g
�(n)
=

n
∑

k=0

Ck
n f (n−k) · g(k).

La démonstration est similaire à celle de la formule du binôme de Newton et les coefficients que l’on obtient
sont les mêmes.

Exemple 3.

• Pour n= 1 on retrouve ( f · g)′ = f ′g + f g ′.
• Pour n= 2, on a ( f · g)′′ = f ′′g + 2 f ′g ′ + f g ′′.

Exemple 4.
Calculons les dérivées n-ème de exp(x)·(x2+1) pour tout n ⩾ 0. Notons f (x) = exp(x) alors f ′(x) = exp(x),
f ′′(x) = exp(x),..., f (k)(x) = exp(x). Notons g(x) = x2 + 1 alors g ′(x) = 2x , g ′′(x) = 2 et pour k ⩾ 3,
g(k)(x) = 0.
Appliquons la formule de Leibniz :
�

f · g
�(n)
(x) = f (n)(x) · g(x)+C1

n f (n−1)(x) · g(1)(x)+C2
n f (n−2)(x) · g(2)(x)+C3

n f (n−3)(x) · g(3)(x)+ · · ·

On remplace f (k)(x) = exp(x) et on sait que g(3)(x) = 0, g(4)(x) = 0,. . .Donc cette somme ne contient que
les trois premiers termes :

�

f · g
�(n)
(x) = exp(x) · (x2 + 1) + C1

n exp(x) · 2x + C2
n exp(x) · 2.

Que l’on peut aussi écrire :
�

f · g
�(n)
(x) = exp(x) ·

�

x2 + 2nx + n(n− 1) + 1
�

.
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Mini-exercices.

1. Calculer les dérivées des fonctions suivantes : f1(x) = x ln x , f2(x) = sin 1
x , f3(x) =

p

1+
p

1+ x2,

f4(x) =
�

ln(1+x
1−x )

�
1
3 , f5(x) = x x , f6(x) = arctan x + arctan 1

x .

2. On note ∆( f ) = f ′

f . Calculer ∆( f × g).

3. Soit f :]1,+∞[→]−1,+∞[ définie par f (x) = x ln(x)− x . Montrer que f est une bijection. Notons
g = f −1. Calculer g(0) et g ′(0).

4. Calculer les dérivées successives de f (x) = ln(1+ x).

5. Calculer les dérivées successives de f (x) = ln(x) · x3.

1.8. Règle de l’Hospital

Cette règle peut être utile quand le calcul de limites de fonctions rationnelles débouchent sur une forme
indéterminée de type 0/0 ou∞/∞.

Théorème 2 (Règle de l’Hospital).
Soient f , g : I → R deux fonctions dérivables et soit x0 ∈ I . On suppose que

• f (x0) = g(x0) = 0,

• ∀x ∈ I \ {x0} g ′(x) ̸= 0.

Si lim
x→x0

f ′(x)
g ′(x)

= ℓ (∈ R) alors lim
x→x0

f (x)
g(x)

= ℓ.

Exemple 5.
Calculer la limite en 1 de ln(x2+x−1)

ln(x) . On vérifie que :

• f (x) = ln(x2 + x − 1), f (1) = 0, f ′(x) = 2x+1
x2+x−1 ,

• g(x) = ln(x), g(1) = 0, g ′(x) = 1
x ,

• Prenons I =]0,1], x0 = 1, alors g ′ ne s’annule pas sur I \ {x0}.

f ′(x)
g ′(x)

=
2x + 1

x2 + x − 1
× x =

2x2 + x
x2 + x − 1

−−→
x→1

3.

Donc
f (x)
g(x)
−−→
x→1

3.

Mini-exercices.

1. Soit f (x) = x3

3 +
x2

2 − 2x + 2. Étudier la fonction f . Tracer son graphe. Montrer que f admet un
minimum local et un maximum local.

2. Soit f (x) =
p

x . Appliquer le théorème des accroissements finis sur l’intervalle [100, 101]. En déduire
l’encadrement 10+ 1

22 ⩽
p

101 ⩽ 10+ 1
20 .

3. Appliquer le théorème des accroissements finis pour montrer que ln(1+ x)− ln(x) < 1
x (pour tout

x > 0).

4. Soit f (x) = ex . Que donne l’inégalité des accroissements finis sur [0, x]?

5. Appliquer la règle de l’Hospital pour calculer les limites suivantes (quand x → 0) :
x

(1+ x)n − 1
;

ln(x + 1)
p

x
.
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On peut également retrouver les résultats sur la croissance comparée des fonctions usuelles ln, exp et
puissance.

2. Optimisation

Une application importante des dérivées de fonctions est de trouver les maximum ou minimum d’une
fonction parce que ce sont généralement la solution de nombreux problèmes en économie : problème du
consommateur (maximisation de l’utilité), problème du producteur (minimisation des coûts, maximisation
du profit), problème du statisticien (maximisation de la log-vraisemblance), problème de l’économètre
(minimisation de la somme des carrés des résidus), . . .
Il faudra ainsi trouver les points pour lesquels la fonction dérivée première s’annule. L’étude du signe de la
dérivée d’ordre 2 permettra de déterminer la nature de la solution trouvée (maximum ou minimum, local
ou global).

2.1. Présentation

Définition 4.
Soit f : I → R une fonction définie sur un intervalle I .
x0 est un point critique de f si f ′(x0) = 0.

f admet un maximum local en x0 (resp. un minimum local en x0) s’il existe un intervalle ouvert J
contenant x0 tel que

pour tout x ∈ I ∩ J f (x)⩽ f (x0) (resp. f (x)⩾ f (x0)).

f admet un extremum local en x0 si f admet un maximum local ou un minimum local en ce point.

x

y

I

maximums locauxminimums locaux

maximum global

Dire que f a un maximum local en x0 signifie que f (x0) est la plus grande des valeurs f (x) pour les x
proches de x0. On dit que f : I → R admet un maximum global en x0 si pour toutes les autres valeurs
f (x), x ∈ I , on a f (x)⩽ f (x0) (on ne regarde donc pas seulement les f (x) pour x proche de x0). Bien sûr
un maximum global est aussi un maximum local, mais la réciproque est fausse.

Théorème 3.
Soit I un intervalle ouvert et f : I → R une fonction dérivable. Si f admet un maximum local (ou un
minimum local) en x0 alors f ′(x0) = 0.
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En d’autres termes, un maximum local (ou un minimum local) x0 est toujours un point critique. Géométri-
quement, au point (x0, f (x0)) la tangente au graphe est horizontale.

On en revient donc à la question de trouver les zéros d’une fonction (ici pas la fonction d’intérêt mais
sa dérivée).

x

y

I

Preuve du théorème. Supposons que x0 soit un maximum local de f , soit donc J l’intervalle ouvert de la
définition contenant x0 tel que pour tout x ∈ I ∩ J on a f (x)⩽ f (x0).

• Pour x ∈ I ∩ J tel que x < x0 on a f (x)− f (x0)⩽ 0 et x − x0 < 0 donc f (x)− f (x0)
x−x0

⩾ 0 et donc à la limite

limx→x−0
f (x)− f (x0)

x−x0
⩾ 0.

• Pour x ∈ I ∩ J tel que x > x0 on a f (x)− f (x0)⩽ 0 et x − x0 > 0 donc f (x)− f (x0)
x−x0

⩽ 0 et donc à la limite

limx→x+0
f (x)− f (x0)

x−x0
⩽ 0.

Or f est dérivable en x0 donc

lim
x→x−0

f (x)− f (x0)
x − x0

= lim
x→x+0

f (x)− f (x0)
x − x0

= f ′(x0).

La première limite est positive, la seconde est négative, la seule possibilité est que f ′(x0) = 0.

Exemple 6.
Étudions les extremums de la fonction fλ définie par fλ(x) = x3 +λx en fonction du paramètre λ ∈ R. La
dérivée est f ′

λ
(x) = 3x2 +λ. Si x0 est un extremum local, alors f ′

λ
(x0) = 0.

• Si λ > 0 alors f ′
λ
(x) > 0 et ne s’annule jamais il n’y a pas de points critiques donc pas non plus

d’extremums. En anticipant sur la suite : fλ est strictement croissante sur R.

• Si λ= 0 alors f ′
λ
(x) = 3x2. Le seul point critique est x0 = 0. Mais ce n’est ni un maximum local, ni un

minimum local. En effet si x < 0, f0(x)< 0= f0(0) et si x > 0, f0(x)> 0= f0(0).

• Si λ < 0 alors f ′
λ
(x) = 3x2 − |λ| = 3

�

x +
Ç

|λ|
3

��

x −
Ç

|λ|
3

�

. Il y a deux points critiques x1 = −
Ç

|λ|
3 et

x2 = +
Ç

|λ|
3 . En anticipant sur la suite : f ′

λ
(x)> 0 sur ]−∞, x1[ et ]x2,+∞[ et f ′

λ
(x)< 0 sur ]x1, x2[ ;

maintenant fλ est croissante sur ]−∞, x1[, puis décroissante sur ]x1, x2[, donc x1 est un maximum
local. D’autre part fλ est décroissante sur ]x1, x2[ puis croissante sur ]x2,+∞[ donc x2 est un minimum
local.



DÉRIVÉE D’UNE FONCTION 2. OPTIMISATION 90

λ > 0 λ= 0

x1

x2

λ < 0

Remarque.

1. La réciproque du théorème 3 est fausse. Par exemple la fonction f : R→ R, définie par f (x) = x3 vérifie
f ′(0) = 0 mais x0 = 0 n’est ni maximum local ni un minimum local.

2. L’intervalle du théorème 3 est ouvert. Pour le cas d’un intervalle fermé, il faut faire attention aux
extrémités. Par exemple si f : [a, b]→ R est une fonction dérivable qui admet un extremum en x0, alors
on est dans l’une des situations suivantes :

• x0 = a,

• x0 = b,

• x0 ∈]a, b[ et dans ce cas on a bien f ′(x0) = 0 par le théorème 3.

Aux extrémités on ne peut rien dire pour f ′(a) et f ′(b), comme le montre les différents maximums sur
les dessins suivants.

Ix0 Ia I b

3. Pour déterminer max[a,b] f et min[a,b] f (où f : [a, b]→ R est une fonction dérivable) il faut comparer
les valeurs de f aux différents points critiques et en a et en b.

2.2. Théorème de Rolle

Théorème 4 (Théorème de Rolle).
Soit f : [a, b]→ R telle que

• f est continue sur [a, b],
• f est dérivable sur ]a, b[,
• f (a) = f (b).

Alors il existe c ∈]a, b[ tel que f ′(c) = 0.
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f (a) = f (b)

ca b

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est horizontale.

Démonstration. Tout d’abord, si f est constante sur [a, b] alors n’importe quel c ∈]a, b[ convient. Sinon
il existe x0 ∈ [a, b] tel que f (x0) ̸= f (a). Supposons par exemple f (x0) > f (a). Alors f est continue sur
l’intervalle fermé et borné [a, b], donc elle admet un maximum en un point c ∈ [a, b]. Mais f (c)⩾ f (x0)>
f (a) donc c ̸= a. De même comme f (a) = f (b) alors c ̸= b. Ainsi c ∈]a, b[. En c, f est donc dérivable et
admet un maximum (local) donc f ′(c) = 0.

Mini-exercices.

1. Dessiner le graphe de fonctions vérifiant : f1 admet deux minimums locaux et un maximum local ;
f2 admet un minimum local qui n’est pas global et un maximum local qui est global ; f3 admet une
infinité d’extremums locaux ; f4 n’admet aucun extremum local.

2. Calculer en quel point la fonction f (x) = ax2 + bx + c admet un extremum local.

3. Soit f : [0,2]→ R une fonction deux fois dérivable telle que f (0) = f (1) = f (2) = 0. Montrer qu’il
existe c1, c2 tels que f ′(c1) = 0 et f ′(c2) = 0. Montrer qu’il existe c3 tel que f ′′(c3) = 0.

4. Montrer que chacune des trois hypothèses du théorème de Rolle est nécessaire.

2.3. Théorème des accroissements finis

Théorème 5 (Théorème des accroissements finis).
Soit f : [a, b]→ R une fonction continue sur [a, b] et dérivable sur ]a, b[. Il existe c ∈]a, b[ tel que

f (b)− f (a) = f ′(c) (b− a)

A

B

ca b

Interprétation géométrique : il existe au moins un point du graphe de f où la tangente est parallèle à
la droite (AB) où A= (a, f (a)) et B = (b, f (b)).



DÉRIVÉE D’UNE FONCTION 2. OPTIMISATION 92

Démonstration. Posons ℓ = f (b)− f (a)
b−a et g(x) = f (x)−ℓ ·(x−a). Alors g(a) = f (a), g(b) = f (b)− f (b)− f (a)

b−a ·
(b− a) = f (a). Par le théorème de Rolle, il existe c ∈]a, b[ tel que g ′(c) = 0. Or g ′(x) = f ′(x)− ℓ. Ce qui
donne f ′(c) = f (b)− f (a)

b−a .

2.4. Sens de variation et dérivée

Cela provient du théorème des accroissements finis et nous permet de caractériser le sens de variation d’une
fonction.

Corollaire 2.
Soit f : [a, b]→ R une fonction continue sur [a, b] et dérivable sur ]a, b[.

1. ∀x ∈]a, b[ f ′(x)⩾ 0 ⇐⇒ f est croissante ;

2. ∀x ∈]a, b[ f ′(x)⩽ 0 ⇐⇒ f est décroissante ;

3. ∀x ∈]a, b[ f ′(x) = 0 ⇐⇒ f est constante ;

4. ∀x ∈]a, b[ f ′(x)> 0 =⇒ f est strictement croissante ;

5. ∀x ∈]a, b[ f ′(x)< 0 =⇒ f est strictement décroissante.

Démonstration. Prouvons par exemple (1).
Sens =⇒. Supposons d’abord la dérivée positive. Soient x , y ∈]a, b[ avec x ⩽ y. Alors par le théorème
des accroissements finis, il existe c ∈]x , y[ tel que f (x)− f (y) = f ′(c)(x − y). Mais f ′(c)⩾ 0 et x − y ⩽ 0
donc f (x)− f (y)⩽ 0. Cela implique que f (x)⩽ f (y). Ceci étant vrai pour tout x , y alors f est croissante.

Sens⇐=. Réciproquement, supposons que f est croissante. Fixons x ∈]a, b[. Pour tout y > x nous avons
y − x > 0 et f (y)− f (x)⩾ 0, ainsi le taux d’accroissement vérifie f (y)− f (x)

y−x ⩾ 0. À la limite, quand y → x ,
ce taux d’accroissement tend vers la dérivée de f en x et donc f ′(x)⩾ 0.

Remarque.
La réciproque au point (4) (et aussi au (5)) est fausse. Par exemple la fonction x 7→ x3 est strictement
croissante et pourtant sa dérivée s’annule en 0.

2.5. Curbature et dérivée seconde

Définition 5.
Une fonction f : E→ R est convexe sur E si et seulement si ∀(x , y) ∈ E2 et ∀λ ∈ [0, 1] :

f (λx + (1−λ)y)⩽ λ f (x) + (1−λ) f (y)
︸ ︷︷ ︸

un point sur la corde

On parle de convexité stricte si l’inégalité est stricte.

f est convexe si et seulement si les cordes sont au dessus de la courbe représentative de f .

Définition 6.
Une fonction f : E→ R est concave sur E si et seulement si ∀(x , y) ∈ E2 et ∀λ ∈ [0, 1] :

f (λx + (1−λ)y)⩾ λ f (x) + (1−λ) f (y)

On parle de concavité stricte si l’inégalité est stricte.

f est concave si et seulement si les cordes sont en dessous de la courbe représentative de f .
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.x

f (x)

y

f (y)

λx + (1−λ)y

f (λx + (1−λ)y)
λ f (x) + (1−λ) f (y)

x

y

x

x ′

(x , f (x))

(x ′, f (x ′))

Exemple de fonction concave Exemple de fonction convexe

Définition 7.
Une fonction f : E → R est convexe si et seulement si la dérivée f ′ est une fonction croissante (en
supposant que la dérivée première existe), c’est-à-dire si et seulement si ∀x ∈ E, f ′′(x)> 0 (en supposant
que la dérivée seconde existe).

Définition 8.
Une fonction f : E→ R est concave si et seulement si la dérivée f ′ est une fonction décroissante (en
supposant que la dérivée première existe), c’est-à-dire si et seulement si ∀x ∈ E, f ′′(x)< 0 (en supposant
que la dérivée seconde existe).

2.6. Optima locaux et globaux

Pour résumer, une fonction f doit vérifier les propriétés suivantes pour afficher un maximum local en x0 :

• Pour qu’un extremum local x0 de f soit un maximum local, il faut que, dans un voisinage de x0 la
fonction f soit croissante puis décroissante à partir de x0.

• Si la dérivée f ′ existe dans un voisinage de x0, pour qu’un extremum local x0 de f soit un maximum
local, il faut que, dans un voisinage de x0 la dérivée f ′ soit positive puis négative à partir de x0 (la
dérivée décroît).

• Si la dérivée seconde f ′′ existe dans un voisinage de x0, pour qu’un extremum local x0 de f soit un
maximum local, il faut que, dans un voisinage de x0 la dérivée f ′′ soit négative.

Plus formellement :

Définition 9.
Soit f une fonction de E dans R telle que les dérivées f ′ et f ′′ soient continues en x0 ∈ E. Alors :

1. f ′(x0) = 0 et f ′′(x0)< 0⇒ maximum local en x0,

2. f ′(x0) = 0 et f ′′(x0)> 0⇒ minimum local en x0.

Une condition plus forte pour déterminer des optima globaux : il faut et suffit que la fonction soit globalement
concave ou convexe sur E.

Définition 10.
Soit f une fonction de E dans R telle que les dérivées f ′ et f ′′ soient continues en x0 ∈ E. Alors :

1. f ′(x0) = 0 et ∀x ∈ E f ′′(x)< 0⇒ maximum global en x0,

2. f ′(x0) = 0 et ∀x ∈ E f ′′(x)> 0⇒ minimum global en x0.
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2.7. Inégalité des accroissements finis

Corollaire 3 (Inégalité des accroissements finis).
Soit f : I → R une fonction dérivable sur un intervalle I ouvert. S’il existe une constante M telle que pour
tout x ∈ I ,

�

� f ′(x)
�

�⩽ M alors

∀x , y ∈ I
�

� f (x)− f (y)
�

�⩽ M |x − y|

Démonstration. Fixons x , y ∈ I , il existe alors c ∈]x , y[ ou ]y, x[ tel que f (x)− f (y) = f ′(c)(x − y) et
comme | f ′(c)|⩽ M alors

�

� f (x)− f (y)
�

�⩽ M |x − y|.

3. La dérivée pour l’approximation de fonctions

3.1. Approximation linéaire

On a vu lors de l’interprétation géométrique de la dérivée tangente au point (x0, f (x0)) que f (x) pour se
réécrire :

y = f (x) = (x − x0) f ′(x0) + f (x0)

Cette équation peut servir d’approximation linéaire de f (x) en x0 puisque c’est une équation de droite.

Exemple 7.
Nous souhaitons calculer

p

1,01 ou du moins en trouver une valeur approchée. Comme 1, 01 est proche de
1 et que

p
1 = 1 on se doute bien que

p

1,01 sera proche de 1. Peut-on être plus précis ? Si l’on appelle f la
fonction définie par f (x) =

p
x , alors la fonction f est une fonction continue en x0 = 1. La continuité nous

affirme que pour x suffisamment proche de x0, f (x) est proche de f (x0). Cela revient à dire que pour x au
voisinage de x0 on approche f (x) par la constante f (x0).

x

y

1

0 1

y = 1

y =
p

x

y = (x − 1) 1
2 + 1

Nous pouvons faire mieux qu’approcher notre fonction par une droite horizontale ! Essayons avec une droite
quelconque. Quelle droite se rapproche le plus du graphe de f autour de x0 ? Elle doit passer par le point
(x0, f (x0)) et doit « coller » le plus possible au graphe : c’est la tangente au graphe en x0. Une équation de
la tangente est

y = (x − x0) f
′(x0) + f (x0)

où f ′(x0) désigne le nombre dérivé de f en x0.
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On sait que pour f (x) =
p

x , on a f ′(x) = 1
2
p

x . Une équation de la tangente en x0 = 1 est donc y =

(x − 1)1
2 + 1. Et donc pour x proche de 1 on a f (x)≈ (x − 1)1

2 + 1. Qu’est-ce que cela donne pour notre
calcul de

p

1, 01? On pose x = 1,01 donc f (x)≈ 1+ 1
2(x − 1) = 1+ 0,01

2 = 1,005. Et c’est effectivement
une très bonne de approximation de

p

0,01= 1, 00498 . . .. En posant h= x − 1 on peut reformuler notre
approximation en :

p
1+ h≈ 1+ 1

2h qui est valable pour h proche de 0.

3.2. Approximations à des ordres supérieurs : les développements limités

La section précédente se généralise pour obtenir des approximations de meilleure qualité.

La formule de Taylor-Young s’écrit :

f (x) =

Tn(x) est le polynôme de Taylor d’ordre n
︷ ︸︸ ︷

f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 + · · ·+

f (n)(a)
n!

(x − a)n+ (x − a)nε(x)
︸ ︷︷ ︸

Rn(x) le reste, avec ε(x)−−→
x→a

0

Notation. Le terme (x − a)nε(x) où ε(x) −−→
x→0

0 est souvent abrégé en « petit o » de (x − a)n et est noté

o((x − a)n). Donc o((x − a)n) est une fonction telle que limx→a
o((x−a)n)
(x−a)n = 0. Il faut s’habituer à cette

notation qui simplifie les écritures, mais il faut toujours garder à l’esprit ce qu’elle signifie.

Cas particulier : Formule de Taylor-Young au voisinage de 0. On se ramène souvent au cas particulier où
a = 0, la formule de Taylor-Young s’écrit alors

f (x) = f (0) + f ′(0)x + f ′′(0)
x2

2!
+ · · ·+ f (n)(0)

xn

n!
+ xnε(x)

où limx→0 ε(x) = 0.

Et avec la notation « petit o » cela donne :

f (x) = f (0) + f ′(0)x + f ′′(0)
x2

2!
+ · · ·+ f (n)(0)

xn

n!
+ o(xn)

Exemple 8.
Soit f :]− 1,+∞[→ R, x 7→ ln(1+ x) ; f est infiniment dérivable. Nous allons calculer les formules de
Taylor en 0 pour les premiers ordres.

Tous d’abord f (0) = 0. Ensuite f ′(x) = 1
1+x donc f ′(0) = 1. Ensuite f ′′(x) = − 1

(1+x)2 donc f ′′(0) = −1.

Puis f (3)(x) = +2 1
(1+x)3 donc f (3)(0) = +2.

Voici donc les premiers polynômes de Taylor :

T0(x) = 0 T1(x) = x T2(x) = x −
x2

2
T3(x) = x −

x2

2
+

x3

3

Les formules de Taylor nous disent que les restes sont de plus en plus petits lorsque n croît. Sur le dessins
les graphes des polynômes T0, T1, T2, T3 s’approchent de plus en plus du graphe de f . Attention ceci n’est
vrai qu’autour de 0.
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x

y

1

0
1

y = ln(1+ x)

y = 0

y = x

y = x − x2

2

y = x − x2

2 +
x3

3

Mini-exercices.

1. Montrer que le polynôme de Taylor d’ordre n de ln(1+ x) en 0 est

Tn(x) =
n
∑

k=1

(−1)k−1 xk

k
= x −

x2

2
+

x3

3
− · · ·+ (−1)n−1 xn

n
.

2. Calculer l’approximation de Taylor en 0 de la fonction ex pour différents ordres et calculer l’approxi-
mation de la constante d’Euler e.

3.3. DL des fonctions usuelles à l’origine

Les DL suivants en 0 proviennent de la formule de Taylor-Young.

Fonction DL

exp x 1+ x
1! +

x2

2! +
x3

3! + · · ·+
xn

n! + xnε(x)

ln(1+ x) x − x2

2 +
x3

3 − · · ·+ (−1)n−1 xn

n + xnε(x)

(1+ x)α 1+αx + α(α−1)
2! x2 + · · ·+ α(α−1)...(α−n+1)

n! xn + xnε(x)
1

1+ x
1− x + x2 − x3 + · · ·+ (−1)n xn + xnε(x)

1
1− x

1+ x + x2 + · · ·+ xn + xnε(x)
p

1+ x 1+ x
2 −

1
8 x2 + · · ·+ (−1)n−1 1·1·3·5···(2n−3)

2nn! xn + xnε(x)

cos x 1− x2

2! +
x4

4! − · · ·+ (−1)n x2n

(2n)! + x2n+1ε(x)

sin x x
1! −

x3

3! +
x5

5! − · · ·+ (−1)n x2n+1

(2n+1)! + x2n+2ε(x)

3.4. Somme et produit de développements limités

On suppose que f et g sont deux fonctions qui admettent des DL en 0 à l’ordre n :

f (x) = c0 + c1 x + · · ·+ cn xn + xnε1(x) g(x) = d0 + d1 x + · · ·+ dn xn + xnε2(x)
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Proposition 5.

• f + g admet un DL en 0 l’ordre n qui est :

( f + g)(x) = f (x) + g(x) = (c0 + d0) + (c1 + d1)x + · · ·+ (cn + dn)x
n + xnε(x).

• f × g admet un DL en 0 l’ordre n qui est : ( f × g)(x) = f (x)× g(x) = Tn(x) + xnε(x) où Tn(x) est le
polynôme (c0 + c1 x + · · ·+ cn xn)× (d0 + d1 x + · · ·+ dn xn) tronqué à l’ordre n.

Tronquer un polynôme à l’ordre n signifie que l’on conserve seulement les monômes de degré ⩽ n.

Exemple 9.
Calculer le DL de cos x ×

p
1+ x en 0 à l’ordre 2.

Avec l’habitude les calculs se font très vite avec la notation « petit o » : dès qu’apparaît un terme x2ε1(x) ou
un terme x3,... on écrit juste o(x2) (ou si l’on préfère x2ε(x)).

cos x ×
p

1+ x =
�

1−
1
2

x2 + o(x2)
�

×
�

1+
1
2

x −
1
8

x2 + o(x2)
�

on développe

= 1+
1
2

x −
1
8

x2 + o(x2)

−
1
2

x2 + o(x2)

+ o(x2)

= 1+
1
2

x −
5
8

x2 + o(x2)

La notation «petit o» évite de devoir donner un nom à chaque fonction, en ne gardant que sa propriété
principale, qui est de décroître vers 0 au moins à une certaine vitesse. Comme on le voit dans cet exemple,
o(x2) absorbe les éléments de même ordre de grandeur ou plus petits que lui : o(x2)−1

4 x3+1
2 x2o(x2) = o(x2).

Mais il faut bien comprendre que les différents o(x2) écrits ne correspondent pas à la même fonction, ce qui
justifie que cette égalité ne soit pas fausse !

4. Exercices

TD

Exercice 61
Soit la fonction :

f (x) =
x

1+ |x |
Calculer f ′(0) si elle existe.

Exercice 62
Calculer les dérivées des fonctions suivantes :

1. f (x) = ln(x2 + x4 + 1)

2. g(x) = x2 ln(x2 + x4 + 1)

3. h(x) = e2x

4. j(x) = ln
�

x3−2
x2+1

�

5. l(x) =
�

1− 1p
x

��

1+ 1p
x

�

6. p(x) = x x
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Exercice 63
Trouver l’expression générale de la dérivée d’ordre n des fonctions suivantes :

1. f (x) = eθ x

2. g(x) = 1
x

3. h(x) = ln(x)

4. i(x) = 1
1−x

5. j(x) = 1
1+x

6. k(x) = 1
1−x2

Exercice 64
Soient a, b et c trois paramètres réels. Montrer qu’il existe x ∈ [0, 1] tel que 4ax3 + 3bx2 + 2cx =
a+ b+ c.

Exercice 65
Une fonction continue sur E dont la dérivée s’annule jamais peut-elle être périodique sur E ?

Exercice 66
Soit f une fonction dérivable de R+ dans R. On suppose que f et f ′ admettent des dérivées finies
en +∞. Montrer que la limite de la dérivée doit être nulle.

Exercice 67
Montrer qu’il est possible d’écrire la fonction exponentielle sous la forme :

ex =
∞
∑

i=0

xn

n!

En déduire une approximation de la constante e.

Exercice 68
Montrer l’égalité suivante au voisinage de 0 :

1
1− x

=
∞
∑

i=0

x i

Exercice 69
Faire une étude de la fonction (en identifiant les optima) :

f (x) = −x3 + x2 + 2x

Exercice 70
Faire une étude de la fonction (en identifiant les optima) :

f (x) =
(ln x)2

x

Exercice 71
Faire une étude de la fonction (en identifiant les optima) :

f (x) =
x2

x2 − 2x + 2
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Exercice 72
Montrer que si la fonction f (x) = ax3 + bx2 + cx + d admet deux extrema, alors l’un est un
maximum et l’autre un minimum.

Exercice 73
Soit le prix de vente unitaire du bien fixé à p.

1. Calculer le profit du producteur si son coût total à produire est donné par C(q) = 60q+ 2q2.

2. Pour quelle valeur de q maximisera-t-il son profit ?

Exercice 74
La somme de deux nombres positifs est égale à 100. Trouver les couples de nombres tels que :

1. Le produit de ces nombres est maximal.

2. La somme des carrés est minimale.

Entraînement

Exercice 75
Soit

f : R→ R
x 7→ f (x) = x2 + 2x + 4

La fonction f est :

A. continue sur [−1,2] et dérivable sur ]− 1,2[
B. continue et dérivable sur ]− 1, 2[
C. continue et dérivable sur [−1,2] .

Exercice 76
La fonction f définie sur R par :

f (x) =

¨

e−
1

x2 si x ̸= 0

0 si x = 0

est-elle :

A. continue et dérivable sur R
B. continue sur R et dérivable sur R∗

C. continue et dérivable sur R∗.

Exercice 77
La fonction f définie sur R\{−1, 1} par f (x) = ln(x2−1)3 est continue et dérivable sur R\{−1, 1}.
Sa fonction dérivée f

′
est définie par :

A. 2x
x2−1 B. 6x

x2−1 C. 3x
x2−1 .
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Exercice 78
La fonction f définie sur R par

f (x) =

¨

x ln |x | si x ̸= 0

0 si x = 0

est continue sur R et dérivable sur R∗.

A. f est décroissante sur [−1/e, 1/e]
B. f est croissante sur [−1/e, 0] et décroissante sur [0,1/e]
C. f est croissante sur R+.

Exercice 79
La fonction f définie sur R par f (x) = 5−x admet pour dérivée :

A. −5−x B. −5×−5−x C. − ln 5× 5−x .

Exercice 80
Soit la fonction f définie sur R. Etudier sa continuité et sa dérivabilité sur R.

f (x) = 1
x2 e1/x ∀x ∈ ]−∞,−1/2]

f (x) = 4
e2 ∀x ∈ ]−1/2, 1]

f (x) = 4
e2 + ln x ∀x ∈ ]1,+∞]

Exercice 81
La fonction f définie sur R par

f (x) =

¨

e1/(x2−1) ∀x ∈ ]−1, 1[

0 ∀x ∈ ]−∞,−1]∪ [1,+∞[

Exercice 82
Dresser le tableau de variation de la fonction f :

f (x) =

√

√ x3

1− x

Exercice 83
Soit la fonction f définie sur R par f (x) = ln(x +

p
x2 + 1). Etudier son sens de variation. Définir

que c’est une bijection et calculer sa fonction réciproque.

Exercice 84
Supposons que la demande d’un bien soit une fonction du revenu : c(R) = 3

p
R. Calculer l’élasticité

revenu : εR =
c
′
(R)

c(R)
R

.

Exercice 85
Déterminer les ensembles de définition et calculer les dérivées des fonctions suivantes :

1. f (x) = 3x4 − 7x3 + 8x − 2

2. f (x) = 17x2 −
p

x
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3. f (x) =
p

x2 + 1

4. f (x) = 8
x −

7
x3

5. f (x) = 2+x
2−x

6. f (x) = x2−7
x−3

7. f (x) =
q

1−x
x2+2 .

Exercice 86
Soit U la fonction d’utilité d’un agent. On définit l’aversion absolue pour le risque par : AU(x) =

−U
′′
(x)

U ′ (x) et l’aversion relative comme : RU(x) = −x U
′′
(x)

U ′ (x) avec x le niveau de richesse de l’agent, U
′

et U
′′

respectivement les dérivées première et seconde de la fonction U si elles existent. Calculer
les aversions absolues et relatives pour le risque pour les fonctions suivantes :

1. U(x) = ax + b

2. U(x) = ln(x)

3. U(x) = 1
1−r x1−r

4. U(x) = −e−ax

Exercice 87
Un agent économique cherche à maximiser son utilité en consommant un bien. Sa fonction d’utilité
est U(x) = ln(x)− ex−1 avec x la quantité consommée. Pour quelle quantité consommée x⋆ l’agent
maximise-t-il son utilité ?

Exercice 88
A l’aide de la formule de Taylor-Young, calculer un développement limité de :

1. f (x) =
p

1+ x à l’ordre 3 au voisinage de 0.

2. g(x) = ln(1+ x) à l’ordre 3 au voisinage de 0.

3. h(x) =
p

1+ x + x2 à l’ordre 2 au voisinage de 0.

4. i(x) = ln(2+ 2x + x2) à l’ordre 2 au voisinage de 2.
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Introduction

L’étude des suites numériques a pour objet la compréhension de l’évolution de séquences de nombres (réels,
complexes, . . .). Ceci permet de modéliser de nombreux phénomènes de la vie quotidienne. Supposons
par exemple que l’on place une somme S à un taux annuel de 10%. Si Sn représente la somme que l’on
obtiendra après n années, on a :

S0 = S

S1 = S × 1,1

S2 = S1 × 1, 1= S × (1,1)2

...

Sn = S × (1,1)n

Au bout de n = 10 ans, on possédera donc S10 = S × (1,1)10 t S × 2,59 (la somme de départ avec les
intérêts cumulés).

1. Définitions

1.1. Définition d’une suite

Définition 1.
Une suite est une application u : N→ R.
Pour n ∈ N, on note u(n) par un et on l’appelle n-ème terme ou terme général de la suite.

La suite est notée u, ou plus souvent (un)n∈N ou simplement (un). Il arrive fréquemment que l’on considère
des suites définies à partir d’un certain entier naturel n0 plus grand que 0, on note alors (un)n⩾n0

.

Exemple 1.

• (
p

n)n⩾0 est la suite de termes : 0, 1,
p

2,
p

3,. . .

• ((−1)n)n⩾0 est la suite qui alterne +1, −1, +1, −1,. . .

• La suite (Sn)n⩾0 de l’introduction définie par Sn = S × (1, 1)n,

http://www.youtube.com/watch?v=eKWRb_wLczo
http://www.youtube.com/watch?v=253AEiNBvGw
http://www.youtube.com/watch?v=tvbsvRGI_38
http://www.youtube.com/watch?v=0W5KVpj769E
http://www.youtube.com/watch?v=hqPxTPEqDXw
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•
� 1

n2

�

n⩾1. Les premiers termes sont 1, 1
4 , 1

9 , 1
16 , . . .

Une suite est aussi souvent définie comme une fonction f de son terme précédent. Il faut se donner un
premier terme ou condition initiale pour la définir complètement. On parle alors de suite récurrente
d’ordre 1.

Définition 2.
Une suite récurrente d’ordre 1 est définie par son premier terme u0 et une fonction f : R→ R permettant
d’établir la relation entre les termes de proche en proche :

u0 ∈ R et un+1 = f (un) pour n ⩾ 0.

Une suite récurrente d’ordre 1 est donc définie par deux éléments : un terme initial u0 et une relation de
récurrence un+1 = f (un).

Exemple 2.

(vn)n⩾0 définie par v0 = 1, et la relation vn+1 = vn+2 pour n ∈ N. Les premiers termes sont 1, 3, 5, . . . Chaque
nouveau terme est la somme du précédent et de la constante 2. C’est une suite récurrente d’ordre 1 aussi
appelée suite arithmétique.

Définition 3.
On peut généraliser la définition précédente si plusieurs termes précédents sont employés. Soit p ce
nombre de termes. Dans ce cas, on parle de suite récurrente d’ordre p. Il faut alors aussi définir p
conditions initiales.

u0, . . . , up−1 ∈ R et un+p = f (un+p−1, un+p−2, . . . , un) pour n ⩾ 0.

Une suite récurrente d’ordre p est donc définie par p premiers termes u0, . . . , up−1 et une relation de
récurrence.

Exemple 3.

(Fn)n⩾0 définie par F0 = 1, F1 = 1 et la relation Fn+2 = Fn+1 + Fn pour n ∈ N (suite de Fibonacci). Les
premiers termes sont 1, 1, 2, 3, 5, 8, 13, . . . Chaque terme est la somme des deux précédents. C’est une
suite récurrente d’ordre 2.

L’enjeu est souvent de passer de l’expression sous forme récurrente de la suite à son expression générale
pour pourvoir calculer directement le terme qui nous intéresse sans avoir à calculer tous les termes
précédents. Cela nous servira beaucoup pour étudier le comportement asymptotique de cette suite
(c’est-à-dire pour n très grand).

1.2. Suite majorée, minorée, bornée

Définition 4.
Soit (un)n∈N une suite.

• (un)n∈N est majorée si ∃M ∈ R ∀n ∈ N un ⩽ M .

• (un)n∈N est minorée si ∃m ∈ R ∀n ∈ N un ⩾ m.

• (un)n∈N est bornée si elle est majorée et minorée.
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n

un

0 1 2

M+

+
+

+
+
+ +

n

un

m

+

+
+

+ +

+

+

1.3. Suite croissante, décroissante

Définition 5.
Soit (un)n∈N une suite.

• (un)n∈N est croissante si ∀n ∈ N un+1 ⩾ un.

• (un)n∈N est strictement croissante si ∀n ∈ N un+1 > un.

• (un)n∈N est décroissante si ∀n ∈ N un+1 ⩽ un.

• (un)n∈N est strictement décroissante si ∀n ∈ N un+1 < un.

• (un)n∈N est monotone si elle est croissante ou décroissante.

• (un)n∈N est strictement monotone si elle est strictement croissante ou strictement décroissante.

Remarque.

• (un)n∈N est croissante si et seulement si ∀n ∈ N un+1 − un ⩾ 0.

• Si (un)n∈N est une suite à termes strictement positifs, elle est croissante si et seulement si ∀n ∈ N un+1
un

⩾
1.

Exemple 4.

• Voici un exemple d’une suite croissante (mais pas strictement croissante) :

n

un

+
+ +

+

+ +

+ +

• La suite (Sn)n⩾0 de l’introduction est strictement croissante car Sn+1/Sn = 1, 1> 1.

• La suite (un)n⩾1 définie par un = (−1)n/n pour n ⩾ 1, n’est ni croissante ni décroissante. Elle est majorée
par 1/2 (borne atteinte en n= 2) et minorée par −1 (borne atteinte en n= 1).
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n

un

1 2 3 4 5 6

1

1
2

− 1
2

−1

M

m+

+

+

+

+

+

• La suite
� 1

n

�

n⩾1 est une suite strictement décroissante. Elle est majorée par 1 (borne atteinte pour n = 1),
elle est minorée par 0 mais cette valeur n’est jamais atteinte.

Mini-exercices.

1. La suite
� n

n+1

�

n∈N est-elle monotone ? Est-elle bornée?

2. Est-il vrai qu’une suite croissante est minorée? Majorée ?

3. Soit x > 0 un réel. Montrer que la suite
� xn

n!

�

n∈N est décroissante à partir d’un certain rang.

1.4. Deux suites particulières : les suites arithmétique et géométrique

Définition 6 (Suite arithmétique).
Soit un réel a appelé raison. Soit (un)n∈N la suite récurrente : un = un−1 + a. On peut la réécrire sous
forme générale comme : un = u0 + na, ∀n ∈ N .

Définition 7 (Suite géométrique).
Soit un réel a appelé raison. Soit (un)n∈N la suite récurrente : un = aun−1. On peut la réécrire sous forme
générale comme : un = u0an, ∀n ∈ N.

Ces deux suites ont des propriétés particulières qu’on étudiera et utilisera plus loin.

2. Limite et convergence

2.1. Définitions

Définition 8.
La suite (un)n∈N a pour limite finie ℓ ∈ R si pour tout ε > 0, il existe un entier naturel N tel que si n ⩾ N
alors |un − ℓ|⩽ ε :

∀ε > 0 ∃N ∈ N ∀n ∈ N (n ⩾ N =⇒ |un − ℓ|⩽ ε)

On dit aussi que la suite (un)n∈N tend vers ℓ. Autrement dit : un est proche d’aussi près que l’on veut de ℓ, à
partir d’un certain rang.
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n

un

ℓ

ℓ+ ε

ℓ− ε

+

+
+ +

+
+
+
+

+ + +
+ +

N

Définition 9.

1. La suite (un)n∈N tend vers +∞ si :

∀A> 0 ∃N ∈ N ∀n ∈ N (n ⩾ N =⇒ un ⩾ A)

2. La suite (un)n∈N tend vers −∞ si :

∀A> 0 ∃N ∈ N ∀n ∈ N (n ⩾ N =⇒ un ⩽ −A)

Remarque.

1. On note limn→+∞ un = ℓ ou parfois un −−−−→n→+∞
ℓ, et de même pour une limite ±∞.

2. limn→+∞ un = −∞ ⇐⇒ limn→+∞−un = +∞.

3. On raccourcit souvent la phrase logique en :

∀ε > 0 ∃N ∈ N (n ⩾ N =⇒ |un − ℓ|⩽ ε) .

Noter que N dépend de ε et qu’on ne peut pas échanger l’ordre du « pour tout » et du « il existe ».

4. L’inégalité |un − ℓ| ⩽ ε signifie ℓ− ε ⩽ un ⩽ ℓ+ ε. On aurait aussi pu définir la limite par la phrase :
∀ε > 0 ∃N ∈ N (n ⩾ N =⇒ |un − ℓ|< ε), où on a remplacé l’inégalité large par l’inégalité stricte.

Définition 10.
Une suite (un)n∈N est convergente si elle admet une limite finie. Elle est divergente sinon (c’est-à-dire
soit la suite tend vers ±∞, soit elle n’admet pas de limite).

On va pouvoir parler de la limite, si elle existe, car il y a unicité de la limite :

Proposition 1.
Si une suite est convergente, sa limite est unique.

Démonstration. On procède par l’absurde. Soit (un)n∈N une suite convergente ayant deux limites ℓ ̸= ℓ′.
Choisissons ε > 0 tel que ε < |ℓ−ℓ

′|
2 .

Comme limn→+∞ un = ℓ, il existe N1 tel que n ⩾ N1 implique |un − ℓ|< ε.
De même limn→+∞ un = ℓ′, il existe N2 tel que n ⩾ N2 implique |un − ℓ′|< ε.
Notons N =max(N1, N2), on a alors pour ce N :

|uN − ℓ|< ε et |uN − ℓ′|< ε
Donc |ℓ− ℓ′|= |ℓ− uN + uN − ℓ′|⩽ |ℓ− uN |+ |uN − ℓ′| d’après l’inégalité triangulaire. On en tire |ℓ− ℓ′|⩽
ε + ε = 2ε < |ℓ − ℓ′|. On vient d’aboutir à l’inégalité |ℓ − ℓ′| < |ℓ − ℓ′| qui est impossible. Bilan : notre
hypothèse de départ est fausse et donc ℓ= ℓ′.
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Exemple 5.
Soit un trajet de train au prix normal de 20 euros. On peut aussi acheter une carte d’abonnement de train
à 50 euros et on obtient ainsi chaque billet à 10 euros. La publicité affirme « 50% de réduction ». Qu’en
pensez-vous?
Pour modéliser la situation en termes de suites, on pose pour un entier n ⩾ 1, un la somme payée au bout
de n achats au plein tarif et vn celle au tarif réduit (y compris le prix de l’abonnement).

un = 20n

vn = 10n+ 50

Soit wn la réduction en pourcentages. On a donc :

wn =
un − vn

un
=

10n− 50
20n

= 0, 5−
5

2n
−−−−→
n→+∞

0,5

Il faut donc une infinité de trajets pour s’approcher des 50% de réduction !

n

wn

50%

+

+
+ + + + + +

2.2. Propriétés des limites

Proposition 2.

1. limn→+∞ un = ℓ ⇐⇒ limn→+∞(un − ℓ) = 0 ⇐⇒ limn→+∞|un − ℓ|= 0,

2. limn→+∞ un = ℓ =⇒ limn→+∞|un|= |ℓ|.

Proposition 3 (Opérations sur les limites).
Soient (un)n∈N et (vn)n∈N deux suites convergentes.

1. Si limn→+∞ un = ℓ, où ℓ ∈ R, alors pour λ ∈ R on a limn→+∞λun = λℓ.

2. Si limn→+∞ un = ℓ et limn→+∞ vn = ℓ′, où ℓ,ℓ′ ∈ R, alors

lim
n→+∞

(un + vn) = ℓ+ ℓ
′

lim
n→+∞

(un × vn) = ℓ× ℓ′

3. Si limn→+∞ un = ℓ où ℓ ∈ R∗ = R\{0} alors un ̸= 0 pour n assez grand et limn→+∞
1
un
= 1
ℓ .

Nous utilisons continuellement ces propriétés, le plus souvent sans nous en rendre compte.

Exemple 6.
Si un→ ℓ avec ℓ ̸= ±1, alors

un(1− 3un)−
1

u2
n − 1
−−−−→
n→+∞

ℓ(1− 3ℓ)−
1

ℓ2 − 1
.

Proposition 4 (Opérations sur les limites infinies).
Soient (un)n∈N et (vn)n∈N deux suites telles que limn→+∞ vn = +∞.

1. limn→+∞
1
vn
= 0

2. Si (un)n∈N est minorée alors limn→+∞ (un + vn) = +∞.

3. Si (un)n∈N est minorée par un nombre λ > 0 alors limn→+∞ (un × vn) = +∞.
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4. Si limn→+∞ un = 0 et un > 0 pour n assez grand alors limn→+∞
1
un
= +∞.

Exemple 7.
La suite (

p
n) tend vers +∞, donc la suite ( 1p

n) tend vers 0.

Dans certaines situations, on est en présence d’une forme indéterminée du type "+∞−∞", "0×∞", "∞∞ "
, ou "0

0 ". On ne peut alors rien dire a priori sur la limite, il faut faire une étude au cas par cas.

Exemple 8.

1. «+∞−∞ » Cela signifie que si un→ +∞ et vn→−∞ il faut faire faire l’étude en fonction de chaque
suite pour déterminer lim(un + vn) comme le prouve les exemples suivants.

lim
n→+∞

(en − ln(n)) = +∞

lim
n→+∞

�

n− n2
�

= −∞

lim
n→+∞

��

n+
1
n

�

− n
�

= 0

2. « 0×∞ »

lim
n→+∞

1
ln n
× en = +∞

lim
n→+∞

1
n
× ln n= 0

lim
n→+∞

1
n
× (n+ 1) = 1

2.3. Exemples remarquables et utiles

Suite arithmétique

Proposition 5 (Suite arithmétique).
Soit une suite arithmétique de raison a et de premier terme u0. Sa représentation générale est un = u0+ na.

1. Si a = 0, sa limite est finie et égale à u0.

2. Si a > 0, alors limn→+∞ un = +∞.

3. Si a < 0, alors limn→+∞ un = −∞.

Suite géométrique

Proposition 6 (Suite géométrique).
Soit une suite géométrique de raison a et de premier terme u0. Sa représentation générale est un = anu0.

1. Si a = 1, on a pour tout n ∈ N : un = u0.

2. Si a > 1, alors limn→+∞ un = +∞.

3. Si −1< a < 1, alors limn→+∞ un = 0.

4. Si a ⩽ −1, la suite (un)n∈N diverge.

Démonstration.

1. est évident.

2. Écrivons a = 1+ b avec b > 0. Alors le binôme de Newton s’écrit an = (1+ b)n = 1+ nb+ C2
n b2 + · · ·+

Ck
n bk + · · ·+ bn. Tous les termes sont positifs, donc pour tout entier naturel n on a : an ⩾ 1+ nb. Or

limn→+∞(1+ nb) = +∞ car b > 0. On en déduit que limn→+∞ an = +∞.
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3. Si a = 0, le résultat est clair. Sinon, on pose b = |1a |. Alors b > 1 et d’après le point précédent
limn→+∞ bn = +∞. Comme pour tout entier naturel n on a : |a|n = 1

bn , on en déduit que limn→+∞|a|n =
0, et donc aussi limn→+∞ an = 0.

4. Supposons par l’absurde que la suite (un)n∈N converge vers le réel ℓ. De a2 ⩾ 1, on déduit que pour tout
entier naturel n, on a a2n ⩾ 1. En passant à la limite, il vient ℓ ⩾ 1. Comme de plus pour tout entier
naturel n on a a2n+1 ⩽ a ⩽ −1, il vient en passant de nouveau à la limite ℓ⩽ −1. Mais comme on a déjà
ℓ⩾ 1, on obtient une contradiction, et donc (un) ne converge pas.

Série géométrique

Proposition 7 (Série géométrique).
Soit a un réel, a ̸= 1. En notant

∑n
k=0 ak = 1+ a+ a2 + · · ·+ an, on a :

n
∑

k=0

ak =
1− an+1

1− a

Démonstration. En multipliant par 1−a on fait apparaître une somme télescopique (presque tous les termes
s’annulent) :

(1− a)
�

1+ a+ a2 + · · ·+ an
�

=
�

1+ a+ a2 + · · ·+ an
�

−
�

a+ a2 + · · ·+ an+1
�

= 1− an+1.

Remarque.
Si a ∈]−1, 1[ et (un)n∈N est la suite de terme général : un =

∑n
k=0 ak, alors limn→+∞ un =

1
1−a . De manière

plus frappante, on peut écrire :

1+ a+ a2 + a3 + · · ·=
1

1− a
Enfin, ces formules sont aussi valables si a ∈ C \ {1}. Si a = 1, alors 1+ a+ a2 + · · ·+ an = n+ 1.

Exemple 9.
L’exemple précédent avec a = 1

2 donne

1+
1
2
+

1
4
+

1
8
+ · · ·= 2.

Cette formule était difficilement concevable avant l’avènement du calcul infinitésimal et a été popularisée
sous le nom du paradoxe de Zénon. On tire une flèche à 2 mètres d’une cible. Elle met un certain laps
de temps pour parcourir la moitié de la distance, à savoir un mètre. Puis il lui faut encore du temps pour
parcourir la moitié de la distance restante, et de nouveau un certain temps pour la moitié de la distance
encore restante. On ajoute ainsi une infinité de durées non nulles, et Zénon en conclut que la flèche n’atteint
jamais sa cible !
L’explication est bien donnée par l’égalité ci-dessus : la somme d’une infinité de termes peut bien être une
valeur finie ! ! Par exemple si la flèche va à une vitesse de 1 m/s, alors elle parcourt la première moitié en 1 s,
le moitié de la distance restante en 1

2 s, etc. Elle parcourt bien toute la distance en 1+ 1
2 +

1
4 +

1
8 + · · ·= 2

secondes !

2

1 1
2

1
4



SUITES NUMÉRIQUES 3. THÉORÈME DE CONVERGENCE 111

3. Théorème de convergence

3.1. Toute suite convergente est bornée

Revenons sur une propriété importante que nous avons déjà démontrée dans la section sur les limites.

Proposition 8.
Toute suite convergente est bornée.

La réciproque est fausse mais nous allons ajouter une hypothèse supplémentaire pour obtenir des résultats.

3.2. Suite monotone

Théorème 1.

Toute suite croissante et majorée est convergente.

Remarque.
Et aussi :

• Toute suite décroissante et minorée est convergente.

• Une suite croissante et qui n’est pas majorée tend vers +∞.

• Une suite décroissante et qui n’est pas minorée tend vers −∞.

Démonstration du théorème 1. Notons A= {un|n ∈ N} ⊂ R. Comme la suite (un)n∈N est majorée, disons par
le réel M , l’ensemble A est majoré par M , et de plus il est non vide. Donc d’après le théorème R4 du chapitre
sur les réels, l’ensemble A admet une borne supérieure : notons ℓ= sup A. Montrons que limn→+∞ un = ℓ.
Soit ε > 0. Par la caractérisation de la borne supérieure, il existe un élément uN de A tel que ℓ− ε < uN ⩽ ℓ.
Mais alors pour n ⩾ N on a ℓ− ε < uN ⩽ un ⩽ ℓ, et donc |un − ℓ|⩽ ε.

3.3. Suites adjacentes

Définition 11.
Les suites (un)n∈N et (vn)n∈N sont dites adjacentes si

1. (un)n∈N est croissante et (vn)n∈N est décroissante,

2. pour tout n ⩾ 0, on a un ⩽ vn,

3. limn→+∞(vn − un) = 0.

Théorème 2.

Si les suites (un)n∈N et (vn)n∈N sont adjacentes,
elles convergent vers la même limite.

Il y a donc deux résultats dans ce théorème : la convergence de (un) et (vn) et en plus l’égalité des limites.
Les termes de la suites sont ordonnées ainsi :

u0 ⩽ u1 ⩽ u2 ⩽ · · ·⩽ un ⩽ · · · · · ·⩽ vn ⩽ · · ·⩽ v2 ⩽ v1 ⩽ v0

Démonstration.

• La suite (un)n∈N est croissante et majorée par v0, donc elle converge vers une limite ℓ.

• La suite (vn)n∈N est décroissante et minorée par u0, donc elle converge vers une limite ℓ′.
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• Donc ℓ′ − ℓ= limn→+∞(vn − un) = 0, d’où ℓ′ = ℓ.

Exemple 10.
Reprenons l’exemple de ζ(2). Soient (un) et (vn) les deux suites définies pour n ⩾ 1 par

un =
n
∑

k=1

1
k2
= 1+

1
22
+

1
32
+ · · ·+

1
n2

et vn = un +
2

n+ 1
.

Montrons que (un) et (vn) sont deux suites adjacentes :

1. (a) (un) est croissante car un+1 − un =
1

(n+1)2 > 0.

(b) (vn) est décroissante :
vn+1 − vn =

1
(n+1)2 +

2
n+2 −

2
n+1 =

n+2+2(n+1)2−2(n+1)(n+2)
(n+2)(n+1)2 = −n

(n+2)(n+1)2 < 0

2. Pour tout n ⩾ 1 : vn − un =
2

n+1 > 0, donc un ⩽ vn.

3. Enfin comme vn − un =
2

n+1 alors lim(vn − un) = 0.

Les suites (un) et (vn) sont deux suites adjacentes, elles convergent donc vers une même limite finie ℓ. Nous
avons en plus l’encadrement un ⩽ ℓ⩽ vn pour tout n ⩾ 1. Ceci fournit des approximations de la limite : par
exemple pour n= 3, 1+ 1

4 +
1
9 ⩽ ℓ⩽ 1+ 1

4 +
1
9 +

1
2 donc 1, 3611 . . . ⩽ ℓ⩽ 1,8611 . . .

3.4. Suites encadrées

Proposition 9.

1. Soient (un)n∈N et (vn)n∈N deux suites convergentes telles que : ∀n ∈ N, un ⩽ vn. Alors

lim
n→+∞

un ⩽ lim
n→+∞

vn

2. Soient (un)n∈N et (vn)n∈N deux suites telles que limn→+∞ un = +∞ et ∀n ∈ N, vn ⩾ un. Alors
limn→+∞ vn = +∞.

3. Théorème des « gendarmes » : si (un)n∈N, (vn)n∈N et (wn)n∈N sont trois suites telles que

∀n ∈ N un ⩽ vn ⩽ wn

et limn→+∞ un = limn→+∞wn = ℓ, alors la suite (vn)n∈N est convergente et limn→+∞ vn = ℓ.

n

un, vn, wn

ℓ wn+ + + + + + + + + + + +

un+
+ + + + + + + + + + +

vn+
+ + + + + + + + + + +

Remarque.

1. Soit (un)n∈N une suite convergente telle que : ∀n ∈ N, un ⩾ 0. Alors limn→+∞ un ⩾ 0.

2. Attention, si (un)n∈N est une suite convergente telle que : ∀n ∈ N, un > 0, on ne peut affirmer que la
limite est strictement positive mais seulement que limn→+∞ un ⩾ 0. Par exemple la suite (un)n∈N donnée
par un =

1
n+1 est à termes strictement positifs, mais converge vers zéro.

Démonstration de la proposition 9.
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1. En posant wn = vn − un, on se ramène à montrer que si une suite (wn)n∈N vérifie ∀n ∈ N, wn ⩾ 0 et
converge, alors limn→+∞wn ⩾ 0. On procède par l’absurde en supposant que ℓ= limn→+∞wn < 0. En
prenant ε= | ℓ2 | dans la définition de limite (définition 8), on obtient qu’il existe un entier naturel N tel
que n ⩾ N implique |wn − ℓ| < ε = −

ℓ
2 . En particulier on a pour n ⩾ N que wn < ℓ−

ℓ
2 =

ℓ
2 < 0, une

contradiction.

ℓ

ℓ+ ε2 =
ℓ
2

+ +
+ +

+
+

N

wn ⩽
ℓ
2 < 0

0

2. Laissé en exercice.

3. En soustrayant la suite (un)n∈N, on se ramène à montrer l’énoncé suivant : si (un)n∈N et (vn)n∈N sont
deux suites telles que : ∀n ∈ N, 0 ⩽ un ⩽ vn et limn→+∞ vn = 0, alors (un) converge et limn→+∞ un = 0.
Soit ε > 0 et N un entier naturel tel que n ⩾ N implique |vn| < ε. Comme |un| = un ⩽ vn = |vn|, on a
donc : n ⩾ N implique |un|< ε. On a bien montré que limn→+∞ un = 0.

Mini-exercices.

1. Soit (un)n∈N la suite définie par un =
2n+1
n+2 . En utilisant la définition de la limite montrer que

limn→+∞ un = 2. Trouver explicitement un rang à partir duquel 1,999 ⩽ un ⩽ 2,001.

2. La suite (un)n∈N de terme général (−1)nen admet-elle une limite ? Et la suite de terme général 1
un

?

3. Déterminer la limite de la suite (un)n⩾1 de terme général
p

n+ 1−
p

n. Idem avec wn =
n!
nn .

4. Utiliser le théorème des « gendarmes » pour trouver la limite de la suite (un)n∈N de terme général
un = 2+ (−1)n

1+n+n2

3.5. Suites telles que
�

�

�

un+1
un

�

�

�< ℓ < 1

Théorème 3.
Soit (un)n∈N une suite de réels non nuls. On suppose qu’il existe un réel ℓ tel que pour tout entier naturel n
(ou seulement à partir d’un certain rang) on ait :

�

�

�

�

un+1

un

�

�

�

�

< ℓ < 1.

Alors limn→+∞ un = 0.

Démonstration. On suppose que la propriété
�

�

�

un+1
un

�

�

�< ℓ < 1 est vraie pour tout entier naturel n (la preuve

dans le cas où cette propriété n’est vraie qu’à partir d’un certain rang n’est pas très différente). On écrit
un

u0
=

u1

u0
×

u2

u1
×

u3

u2
× · · · ×

un

un−1

ce dont on déduit
�

�

�

�

un

u0

�

�

�

�

< ℓ× ℓ× ℓ× · · · ××ℓ= ℓn

et donc |un|< |u0|ℓn. Comme ℓ < 1, on a limn→+∞ ℓ
n = 0. On conclut que limn→+∞ un = 0.
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Corollaire 1.
Soit (un)n∈N une suite de réels non nuls.

Si limn→+∞
un+1
un
= 0, alors limn→+∞ un = 0.

Exemple 11.
Soit a ∈ R. Alors limn→+∞

an

n! = 0.

Démonstration. Si a = 0, le résultat est évident. Supposons a ̸= 0, et posons un =
an

n! . Alors

un+1

un
=

an+1

(n+ 1)!
·

n!
an
=

a
n+ 1

.

Avec le corollaire : comme lim un+1
un
= 0 (car a est fixe), on a limn→+∞ un = 0.

Avec le théorème, en posant n ⩾ N > 2|a| on a :

�

�

�

�

un+1

un

�

�

�

�

=
|a|

n+ 1
⩽
|a|

N + 1
<
|a|
N
<

1
2
= ℓ < 1

et donc limn→+∞ un = 0.

Remarque.

1. Avec les notations du théorème, si on a pour tout entier naturel n à partir d’un certain rang :
�

�

�

un+1
un

�

�

�> ℓ > 1,

alors la suite (un)n∈N diverge. En effet, il suffit d’appliquer le théorème à la suite de terme général 1
|un|

pour voir que limn→+∞|un|= +∞.

2. Toujours avec les notations du théorème, si ℓ= 1 on ne peut rien dire.

Exemple 12.
Pour un nombre réel a, a > 0, calculer limn→+∞

npa.
On va montrer que limn→+∞

npa = 1. Si a = 1, c’est clair. Supposons a > 1. Écrivons a = 1+ h, avec h> 0.
Comme

�

1+
h
n

�n

⩾ 1+ n
h
n
= 1+ h= a

(voir la preuve de la proposition 6) on a en appliquant la fonction racine n-ème, np· :

1+
h
n
⩾ npa ⩾ 1.

On peut conclure grâce au théorème « des gendarmes » que limn→+∞
npa = 1. Enfin, si a < 1, on applique

le cas précédent à b = 1
a > 1.

4. Suites récurrentes d’ordre 1 (facultatif)

Les suites récurrentes définies par une fonction forment une catégorie essentielle de suites.

4.1. Point(s) fixe(s)

Soit f : R → R une fonction. Une suite récurrente est définie par son premier terme et une relation
permettant de calculer les termes de proche en proche :

u0 ∈ R et un+1 = f (un) pour n ⩾ 0.

Une suite récurrente est donc définie par deux données : un terme initial u0, et une relation de récurrence
un+1 = f (un). La suite s’écrit ainsi :

u0, u1 = f (u0), u2 = f (u1) = f ( f (u0)), u3 = f (u2) = f ( f ( f (u0))), . . .
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Le comportement d’une telle suite peut très vite devenir complexe.

Exemple 13.
Soit f (x) = 1+

p
x . Fixons u0 = 2 et définissons pour n ⩾ 0 : un+1 = f (un). C’est-à-dire un+1 = 1+pun.

Alors les premiers termes de la suite sont :

2, 1+
p

2, 1+
Æ

1+
p

2, 1+
Ç

1+
Æ

1+
p

2, 1+

È

1+
Ç

1+
Æ

1+
p

2, . . .

Une suite récurrente donnée n’est pas forcément convergente. Lorsqu’elle admet une limite, l’ensemble des
valeurs possibles est restreint par le résultat essentiel suivant.

Proposition 10.
Si f est une fonction continue et la suite récurrente (un) converge vers ℓ, alors ℓ est une solution de l’équation :

f (ℓ) = ℓ

Si on arrive à montrer que la limite existe, cette proposition affirme qu’elle est à chercher parmi les solutions
de l’équation f (ℓ) = ℓ.

x

y

y = x

ℓ1

ℓ2 ℓ3

Une valeur ℓ, vérifiant f (ℓ) = ℓ est un point fixe de f . La preuve est très simple et utilise essentiellement la
continuité de la fonction f :

Démonstration. Lorsque n→ +∞, un → ℓ et donc aussi un+1 → ℓ. Comme un → ℓ et que f est continue
alors la suite ( f (un))→ f (ℓ). La relation un+1 = f (un) devient à la limite (lorsque n→ +∞) : ℓ = f (ℓ).

Nous allons étudier en détail deux cas particuliers, celui ou la fonction est croissante, puis celui ou la
fonction est décroissante.

4.2. Cas d’une fonction croissante

Commençons par remarquer que pour une fonction croissante, le comportement de la suite (un) définie par
récurrence est assez simple :

• Si u1 ⩾ u0 alors (un) est croissante.

• Si u1 ⩽ u0 alors (un) est décroissante.
La preuve est facile par récurrence : par exemple si u1 ⩾ u0, alors comme f est croissante on a u2 = f (u1)⩾
f (u0) = u1. Partant de u2 ⩾ u1 on en déduit u3 ⩾ u2,...

Voici le résultat principal :

Proposition 11.
Si f : [a, b]→ [a, b] une fonction continue et croissante, alors quelque soit u0 ∈ [a, b], la suite récurrente
(un) est monotone et converge vers ℓ ∈ [a, b] vérifiant f (ℓ) = ℓ .
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Il y a une hypothèse importante qui est un peu cachée : f va de l’intervalle [a, b] dans lui-même. Dans la
pratique, pour appliquer cette proposition, il faut commencer par choisir [a, b] et vérifier que f ([a, b]) ⊂
[a, b].

x

y

a

b

b

a

f ([a, b])

Démonstration. La preuve est une conséquence des résultats précédents. Par exemple si u1 ⩾ u0 alors la
suite (un) est croissante, comme par ailleurs elle est majorée par b, elle converge vers un réel ℓ. Par la
proposition 10, on a f (ℓ) = ℓ. Si u1 ⩽ u0, (un) est une décroissante et minorée par a, et la conclusion est la
même.

Exemple 14.
Soit f : R→ R définie par f (x) = 1

4(x
2 − 1)(x − 2) + x et u0 ∈ [0,2]. Étudions la suite (un) définie par

récurrence : un+1 = f (un) (pour tout n ⩾ 0).

1. Étude de f

(a) f est continue sur R.

(b) f est dérivable sur R et f ′(x)> 0.

(c) Sur l’intervalle [0, 2], f est strictement croissante.

(d) Et comme f (0) = 1
2 et f (2) = 2 alors f ([0,2]) ⊂ [0,2].

2. Graphe de f

x

y

(y = x)

1

2

1 2u0 u1 u2

f

u′0u′1
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Voici comment tracer la suite : on trace le graphe de f et la bissectrice (y = x). On part d’une valeur u0

(en rouge) sur l’axe des abscisses, la valeur u1 = f (u0) se lit sur l’axe des ordonnées, mais on reporte la
valeur de u1 sur l’axe des abscisses par symétrie par rapport à la bissectrice. On recommence : u2 = f (u1)
se lit sur l’axe des ordonnées et on le reporte sur l’axe des abscisses, etc. On obtient ainsi une sorte
d’escalier, et graphiquement on conjecture que la suite est croissante et tend vers 1. Si on part d’une autre
valeur initiale u′0 (en vert), c’est le même principe, mais cette fois on obtient un escalier qui descend.

3. Calcul des points fixes.

Cherchons les valeurs x qui vérifient ( f (x) = x), autrement dit ( f (x)− x = 0), mais

f (x)− x =
1
4
(x2 − 1)(x − 2) (1)

Donc les points fixes sont les {−1, 1,2}. La limite de (un) est donc à chercher parmi ces 3 valeurs.

4. Premier cas : u0 = 1 ou u0 = 2.

Alors u1 = f (u0) = u0 et par récurrence la suite (un) est constante (et converge donc vers u0).

5. Deuxième cas : 0 ⩽ u0 < 1.

• Comme f ([0, 1]) ⊂ [0, 1], la fonction f se restreint sur l’intervalle [0, 1] en une fonction f : [0, 1]→
[0,1].

• De plus sur [0, 1], f (x)− x ⩾ 0. Cela se déduit de l’étude de f ou directement de l’expression (1).

• Pour u0 ∈ [0, 1[, u1 = f (u0)⩾ u0 d’après le point précédent. Comme f est croissante, par récurrence,
comme on l’a vu, la suite (un) est croissante.

• La suite (un) est croissante et majorée par 1, donc elle converge. Notons ℓ sa limite.

• D’une part ℓ doit être un point fixe de f : f (ℓ) = ℓ. Donc ℓ ∈ {−1,1, 2}.
• D’autre part la suite (un) étant croissante avec u0 ⩾ 0 et majorée par 1, donc ℓ ∈ [0,1].
• Conclusion : si 0 ⩽ u0 < 1 alors (un) converge vers ℓ= 1.

6. Troisième cas : 1< u0 < 2.

La fonction f se restreint en f : [1,2]→ [1,2]. Sur l’intervalle [1,2], f est croissante mais cette fois
f (x)⩽ x . Donc u1 ⩽ u0, et la suite (un) est décroissante. La suite (un) étant minorée par 1, elle converge.
Si on note ℓ sa limite alors d’une part f (ℓ) = ℓ, donc ℓ ∈ {−1, 1, 2}, et d’autre part ℓ ∈ [1, 2[. Conclusion :
(un) converge vers ℓ= 1.

Le graphe de f joue un rôle très important, il faut le tracer même si on ne le demande pas explicitement. Il
permet de se faire une idée très précise du comportement de la suite : Est-elle croissante ? Est-elle positive ?
Semble-t-elle converger? Vers quelle limite? Ces indications sont essentielles pour savoir ce qu’il faut
montrer lors de l’étude de la suite.

4.3. Cas d’une fonction décroissante

Proposition 12.
Soit f : [a, b]→ [a, b] une fonction continue et décroissante. Soit u0 ∈ [a, b] et la suite récurrente (un)
définie par un+1 = f (un). Alors :

• La sous-suite (u2n) converge vers une limite ℓ vérifiant f ◦ f (ℓ) = ℓ.
• La sous-suite (u2n+1) converge vers une limite ℓ′ vérifiant f ◦ f (ℓ′) = ℓ′.

Il se peut (ou pas !) que ℓ= ℓ′.

Démonstration. La preuve se déduit du cas croissant. La fonction f étant décroissante, la fonction f ◦ f est
croissante. Et on applique la proposition 11 à la fonction f ◦ f et à la sous-suite (u2n) définie par récurrence
u2 = f ◦ f (u0), u4 = f ◦ f (u2),. . .
De même en partant de u1 et u3 = f ◦ f (u1),. . .
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Exemple 15.

f (x) = 1+
1
x

, u0 > 0, un+1 = f (un) = 1+
1
un

1. Étude de f . La fonction f :]0,+∞[→]0,+∞[ est une fonction continue et strictement décroissante.

2. Graphe de f .

x

y

1

2

1 2u0 u1u2 u3

Le principe pour tracer la suite est le même qu’auparavant : on place u0, on trace u1 = f (u0) sur l’axe des
ordonnées et on le reporte par symétrie sur l’axe des abscisses,... On obtient ainsi une sorte d’escargot,
et graphiquement on conjecture que la suite converge vers le point fixe de f . En plus on note que la
suite des termes de rang pair semble une suite croissante, alors que la suite des termes de rang impair
semble décroissante.

3. Points fixes de f ◦ f .

f ◦ f (x) = f
�

f (x)
�

= f
�

1+
1
x

�

= 1+
1

1+ 1
x

= 1+
x

x + 1
=

2x + 1
x + 1

Donc

f ◦ f (x) = x ⇐⇒
2x + 1
x + 1

= x ⇐⇒ x2 − x − 1= 0 ⇐⇒ x ∈
�

1−
p

5
2

,
1+
p

5
2

�

Comme la limite doit être positive, le seul point fixe à considérer est ℓ= 1+
p

5
2 .

Attention ! Il y a un unique point fixe, mais on ne peut pas conclure à ce stade car f est définie sur
]0,+∞[ qui n’est pas un intervalle compact.

4. Premier cas 0< u0 ⩽ ℓ=
1+
p

5
2 .

Alors, u1 = f (u0)⩾ f (ℓ) = ℓ ; et par une étude de f ◦ f (x)− x , on obtient que : u2 = f ◦ f (u0)⩾ u0 ;
u1 ⩾ f ◦ f (u1) = u3.

Comme u2 ⩾ u0 et f ◦ f est croissante, la suite (u2n) est croissante. De même u3 ⩽ u1, donc la suite
(u2n+1) est décroissante. De plus comme u0 ⩽ u1, en appliquant f un nombre pair de fois, on obtient
que u2n ⩽ u2n+1. La situation est donc la suivante :

u0 ⩽ u2 ⩽ · · ·⩽ u2n ⩽ · · ·⩽ u2n+1 ⩽ · · ·⩽ u3 ⩽ u1

La suite (u2n) est croissante et majorée par u1, donc elle converge. Sa limite ne peut être que l’unique
point fixe de f ◦ f : ℓ= 1+

p
5

2 .
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La suite (u2n+1) est décroissante et minorée par u0, donc elle converge aussi vers ℓ= 1+
p

5
2 .

On en conclut que la suite (un) converge vers ℓ= 1+
p

5
2 .

5. Deuxième cas u0 ⩾ ℓ=
1+
p

5
2 .

On montre de la même façon que (u2n) est décroissante et converge vers 1+
p

5
2 , et que (u2n+1) est

croissante et converge aussi vers 1+
p

5
2 .

Mini-exercices.

1. Soit f (x) = 1
9 x3 + 1, u0 = 0 et pour n ⩾ 0 : un+1 = f (un). Étudier en détail la suite (un) : (a) montrer

que un ⩾ 0 ; (b) étudier et tracer le graphe de f ; (c) tracer les premiers termes de (un) ; (d) montrer
que (un) est croissante ; (e) étudier la fonction g(x) = f (x)− x ; (f) montrer que f admet deux points
fixes sur R+, 0< ℓ < ℓ′ ; (g) montrer que f ([0,ℓ]) ⊂ [0,ℓ] ; (h) en déduire que (un) converge vers ℓ.

2. Soit f (x) = 1+
p

x , u0 = 2 et pour n ⩾ 0 : un+1 = f (un). Étudier en détail la suite (un).

3. Soit (un)n∈N la suite définie par : u0 ∈ [0, 1] et un+1 = un − u2
n. Étudier en détail la suite (un).

4. Étudier la suite définie par u0 = 4 et un+1 =
4

un+2 .

5. Exercices

TD

Exercice 89
Soit la suite de terme général un = un−1 + 1 pour n ⩾ 1, avec la condition initiale u1 = 1. (1)
Donner une expression de un en fonction du rang n. (2) Soit la suite vn =

∑n
i=1 ui pour n ⩾ 1.

Quelle est la condition initiale de cette suite ? Déterminer vn.

Exercice 90
Soit la suite de terme général un = ρun−1 pour n ⩾ 1 avec la condition initiale u0 = 1 et 0< ρ < 1.
(1) Donner une expression de un en fonction du rang n et de sa condition initiale. (2) Montrer
que un tend vers 0 quand n tend vers l’infini en établissant que l’on peut rendre arbitrairement
petite la distance entre un et 0 à partir du moment où n est assez grand. (3) Dans le cas où la suite
admet une limite, combien d’itérations faut-il pour réduire de moitié la distance à la limite? (4)
Montrer que la suite diverge si ρ > 1.

Exercice 91
Soit la suite de terme général un =

n+2
n . Montrer que cette suite a pour limite 1.

Exercice 92
Quel est le comportement asymptotique de la suite de terme général un = −n.

Exercice 93
Soit la suite de terme général un =

(−1)n+1

n2 . Montrer que cette suite admet 0 pour limite.

Exercice 94
Soit la suite (un) ∈Q définie par :

un =
un−1

2
+

1
un−1
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avec u1 = 2. (1) Donner les premiers termes de la suite. (2) Montrer que la suite est inférieurement
bornée par

p
2. (3) Calculer le point fixe de la suite. (4) Montrer que la suite est monotone

décroissante. (5) Conclure sur le comportement asymptotique, la limite de la suite est-elle dans
Q? (6) Montrer que un+1 −

p
2< 1

2

�

un −
p

2
�

et en déduire que un −
p

2<
p

2(
p

2−1)
2n .

Entraînement

Exercice 95
Pour la suite géométrique u de raison

p
2 et u2 = 5, le terme u10 est égal à :

A. 80
p

2 B. 160 C. 80.

Exercice 96
La suite u est telle que : ∀n ∈ N, u0 = 1 et un+1 = 2n un. un est égal à :

A. 2n2
B. 2

n(n−1)
2 C. 2

n(n+1)
2 .

Exercice 97
∀n ∈ N∗, un = 1+ (0.1) + · · ·+ (0.1)n. La suite un converge vers :

A. 10/9 B. 9/10 C. 11/10.

Exercice 98
La suite u est géométrique, de raison q > 0 et de premier terme u0 > 0. La suite v = ln u est :

A. géométrique de raison eq B. arithmétique de raison q C. arithmétique de raison ln q.

Exercice 99
Soit la suite u définie sur n ∈ N par :

un+2 =
5
4

un+1 −
1
4

un

u0 = 1, u1 = 2

1. Soit la suite v de terme général vn = un+1 − un. Montrer que v est une suite géométrique.
Calculer vn en fonction de n.

2. En déduire un en fonction de n. La suite u est-elle convergente?

3. Déterminer le rang p à partir duquel :
�

�

�

�

un −
7
3

�

�

�

�

⩽ 10−6

Exercice 100
Un agent place un montant de 2 000 euros au taux de 5% l’an. De plus, il ajoute 500 euros tous
les ans.

1. Ecrire l’équation de récurrence correspondante.
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2. L’écrire sous forme générale.

3. Quelle est la condition initiale ?

4. Quel est le montant à l’issue de 10 ans ?

5. Au bout de combien de temps le capital double-t-il ?

Exercice 101
Sur un marché la demande pour un bien à la date t est linéaire par rapport au prix du bien :

D(pt) : qt = a− b pt

où a et b sont deux paramètres réels strictement positifs. Sur le même marché, la quantité offerte
à la date t dépend du prix à la date t − 1 :

S(pt−1) : qt = c + d pt−1

où c et d sont deux paramètres réels positifs. Les offreurs utilisent le prix de la date précédente
pour anticiper le prix aujourd’hui : on dit qu’ils ont des anticipations naïves.

1. Montrer que la quantité offerte est égale à la quantité demandée si et seulement si le prix à la
date t est donné par :

pt =
a− c

b
−

d
b

pt−1

2. Calculer le point fixe p⋆ (ou état stationnaire) de cette équation de récurrence pour le prix.
Quelle hypothèse faut-il poser sur les paramètres pour que ce prix ait un sens?

3. Montrer que p⋆ est le prix d’équilibre sur ce marché. Calculer la quantité échangée à l’équilibre.

4. Calculer le prix à la t.

5. Donner la condition sous laquelle le prix converge vers p⋆. Commenter. La convergence est-elle
monotone ?

Exercice 102
Sur un marché, l’offre et la demande sont caractérisées par :

S(p) : q = 1+ p

D(p) : q = 2− p

1. Calculer le prix d’équilibre p⋆ et les quantités échangées à l’équilibre, q⋆.

2. Supposons que le marché ne soit pas équilibré. On admet que dans une situation de déséquilibre,
le prix augmente la demande est supérieure à l’offre (demande excédentaire positive). Plus
formellement on admet que le prix est mis à jour à l’aide de la récurrence suivante :

pt+1 = pt +α(D(pt)− S(pt))

Déterminer le point fixe de cette récurrence, c’est-à-dire le prix p tel que p = p+α(D(p)−S(p)).
Comparer p et p⋆.

3. Supposons que le prix initial p1 soit différent de p. Exprimer pt en fonction de p0 et α.

4. Montrer que la chronique de prix converge de façon monotone vers p si 0< α < 1
2 .

5. Quelles sont les prédictions du modèle si α est en dehors de cet intervalle ?
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Fonctions de
plusieurs variables

Chapitre

8

Introduction

Nous avons commencé à étudier les fonctions d’une variable : par exemple, t 7→ f (t) représente l’évolution
d’une population en fonction du temps. Nous avons vu comment déterminer ses propriétés (caractéristiques,
évolution, extremum, limites . . .).
Mais la plupart des phénomènes sont multi-critères et dépendent de plusieurs variables : par exemple, le
prix d’un logement dépend de plus d’un critère ; de même pour la probabilité d’un étudiant de trouver du
travail...
Le but de ce chapitre est de généraliser (succinctement) ce qu’on a appris pour les fonctions d’une variable.

1. Définitions et représentations graphiques

Nous allons étudier les fonctions de plusieurs variables dans le cadre particulier de R2 ou R3, mais également
dans le cadre général de Rn. Ces fonctions seront donc de la forme

f : E ⊂ Rn→ R,

où n ⩾ 1 est un entier naturel.
Autrement dit, les éléments de l’ensemble de départ E seront des n-uplets du type (x1, . . . , xn) que l’on peut
considérer comme des vecteurs et les éléments de l’ensemble d’arrivée seront des réels.

Définition 1.
f une fonction réelle à n variables est définie telle que :

f : E ⊂ Rn→ R

(x1, x2, . . . , xn−1, xn) 7→ f (x1, x2, . . . , xn−1, xn).

Le cas le plus simple, n= 1, est connu depuis le lycée et a été abondamment revu cette année.

f : E ⊂ R→ R

x 7→ f (x).

En renommant f (x) en y , la représentation graphique de la fonction sera une courbe dans le plan (0, x , y).
Par exemple :
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x

y

(0, 0)

(x , f (x))

x

f (x)

Dans le cas n = 2, les choses se compliquent un peu. Le phénomène décrit par la fonction f dépend de
deux variables x et y . On le définira comme :

f : E ⊂ R2→ R

(x , y) 7→ f (x , y).

Ces fonctions (x , y) 7→ f (x , y) seront notre principal sujet d’étude cette année. En renommant f (x , y) en z,
la fonction sera représentée par des surfaces dans l’espace (0, x , y, z).

x

y

z

(x , y)

(x , y, f (x , y))
f (x , y)

x
y

z

Dès que n> 2, il devient difficile d’avoir une représentation graphique car on sera dans un espace à n+ 1
dimensions (les n variables plus la valeur de la fonction f (.)). Mais nous pourrons quand même faire ruser
et faire plein de calculs.

Exemple 1.

1. Distance d’un point à l’origine en fonction de ses coordonnées (x , y) :

f : R2 −→ R
(x , y) 7−→

p

x2 + y2.

2. Aire d’un rectangle en fonction de sa longueur x et sa largeur y :

f : R2 −→ R
(x , y) 7→ x y.

3. Aire d’un parallélépipède en fonction de ses trois dimensions (x , y, z) :

f : R3 −→ R
(x , y, z) 7→ 2(x y + yz + xz).
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1.1. Les ensembles de définition

Définition 2.
Si on nous donne d’abord une expression pour f (x1, . . . , xn), alors le domaine de définition de f est
le plus grand sous-ensemble Df ⊂ Rn tel que, pour chaque (x1, . . . , xn) de Df , f (x1, . . . , xn) soit bien
définie. La fonction est alors f : Df → R.

Exemple 2.

1. f (x , y) = ln(1+ x + y)

Il faut que 1+ x + y soit strictement positif, afin de pouvoir calculer son logarithme. Donc :

Df =
�

(x , y) ∈ R2 | 1+ x + y > 0
	

Pour tracer cet ensemble, on trace d’abord la droite d’équation 1+ x + y = 0. On détermine ensuite de
quel côté de la droite est l’ensemble 1+ x + y > 0. Ici, c’est au-dessus de la droite.

x

y

1

1

x + y + 1= 0

2. f (x , y) = exp
�

x+y
x2−y

�

Le dénominateur ne doit pas s’annuler :

Df =
�

(x , y) ∈ R2 | x2 − y ̸= 0
	

Les points de l’ensemble de définition sont tous les points du plan qui ne sont pas sur la parabole
d’équation (y = x2).

x

y

1

1

y = x2

1.2. Représentations graphiques

Définition 3.
Soit f : Df ⊂ R2→ R une fonction de 2 variables. Le graphe G f de f est le sous-ensemble de R3 formé
des points de coordonnées (x , y, f (x , y)) avec (x , y) dans l’ensemble de définition Df . Le graphe est
donc :

G f =
�

(x , y, z) ∈ R3 | (x , y) ∈ Df et z = f (x , y)
	

.
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Représenter graphiquement le graphe n’est donc possible que pour les fonctions d’une seule variable ou de
deux variables.
On peut s’intéresser à différentes représentations graphiques.

En tranches

Soit la fonction à deux variables f : (x , y) 7→ f (x , y).

x
y

z

Représentation graphique de la fonction : G f

Une première façon de faire est de tracer, pour quelques valeurs de a et b, les graphes des fonctions partielles

f1 : x 7→ f (x , b) et f2 : y 7→ f (a, y).

b

f (x , b)

x
y

z
a

f (a, y)

x
y

z

Intersection de G f avec le plan (y = b) Intersection de G f avec le plan (x = a)

En lignes de niveau

On va aussi s’intéresser à d’autres courbes tracées sur la surface : les courbes de niveau.

Définition 4.
Soit f : Df ⊂ R2→ R une fonction de deux variables.

• La ligne de niveau z = c ∈ R est

Lc =
�

(x , y) ∈ Df | f (x , y) = c
	

.

• La courbe de niveau z = c est la trace de G f dans le plan (z = c) :

G f ∩ (z = c) =
�

(x , y, c) ∈ R3 | f (x , y) = c
	

.
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La ligne de niveau c est une courbe du plan R2, la courbe de niveau c est une courbe de l’espace R3. On
obtient la courbe de niveau c en partant de la ligne de niveau c et en remontant à l’altitude c.

Exemple 3.
Soit f : R2→ R définie par f (x , y) = x2 + y2.

• Si c < 0, la ligne de niveau Lc est vide (aucun point n’a d’altitude négative).

• Si c = 0, la ligne de niveau L0 se réduit à {(0, 0)}.
• Si c > 0, la ligne de niveau Lc est le cercle du plan de centre (0,0) et de rayon

p
c. On remonte Lc à

l’altitude z = c : la courbe de niveau est alors le cercle horizontal de l’espace de centre (0,0, c) et de
rayon

p
c.

Le graphe est alors une superposition de cercles horizontaux de l’espace de centre (0, 0, c) et de rayon
p

c
avec c ⩾ 0.

(a) f (x , y) en 3D (b) Courbes de niveau (c) Lignes de niveau dans (0, x , y)

F I G U R E 8.1 – Exemple : f (x , y) = x2

a2 +
y2

b2

(a) Surface (b) Courbes de niveau (c) Lignes de niveau dans (0, x , y)

(d) Tranches avec x constant (e) Tranches avec y constant
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F I G U R E 8.2 – Exemple : f (x , y) = x2

(a) Surface (b) Courbes de niveau (c) Lignes de niveau dans (0, x , y)

(d) Tranches avec x constant (e) Tranches avec y constant

F I G U R E 8.3 – Exemple : f (x , y) = x2 − y2

(a) Surface (b) Courbes de niveau (c) Lignes de niveau

(d) Tranches avec x constant (e) Tranches avec y constant
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Mini-exercices.

1. Déterminer et dessiner le domaine de définition de la fonction définie par f (x , y) = ln(x y). Même
question avec g(x , y) =

p

2x − y2 + 1 et h(x , y, z) = 1
x +

1
y +

1
z .

2. Soit f (x , y) = x y. Dessiner le graphe de f , les tranches et les lignes de niveau. Quelle surface
reconnaissez-vous ? Vous pouvez vous aider d’un ordinateur. Mêmes questions avec g(x , y) = −x2− y2.

2. Limites et continuité (facultatif)

Les notions de limite et de continuité des fonctions d’une seule variable se généralisent en plusieurs variables
sans complexité supplémentaire : il suffit de remplacer la valeur absolue par la norme euclidienne. Dès lors,
tous les règles de calcul déjà rencontrées peuvent s’appliquer.

2.1. Définition

Soit f une fonction f : E ⊂ Rn→ R définie au voisinage de x0 ∈ Rn, sauf peut-être en x0.

Définition 5.
La fonction f admet pour limite le nombre réel ℓ lorsque x tend vers x0 si :

∀ε > 0 ∃δ > 0 ∀x ∈ E 0< ∥x − x0∥< δ =⇒ | f (x)− ℓ|< ε

On écrit alors

lim
x0

f = ℓ ou lim
x→x0

f (x) = ℓ ou f (x) −→
x→x0

ℓ.

On définirait de même limx→x0
f (x) = +∞ par :

∀A> 0 ∃δ > 0 ∀x ∈ E 0< ∥x − x0∥< δ =⇒ | f (x)|> A

Remarque.

• La notion de limite ne dépend pas ici des normes utilisées.

• Si elle existe, la limite est unique.

2.2. Opérations sur les limites

Pour calculer les limites, on ne recourt que rarement à cette définition. On utilise plutôt les théorèmes
généraux : opérations sur les limites et encadrement. Ce sont les mêmes énoncés que pour les fonctions
d’une variable : il n’y a aucune difficulté ni nouveauté.

Proposition 1 (Opérations sur les limites).
Soient f , g : Rn→ R définies au voisinage de x0 ∈ Rn et telles que f et g admettent des limites en x0. Alors :

lim
x0
( f + g) = lim

x0
f + lim

x0
g lim

x0
( f · g) = lim

x0
f × lim

x0
g

Et si g ne s’annule pas dans un voisinage de x0 :

lim
x0

1
g
=

1
limx0

g
lim
x0

f
g
=

limx0
f

limx0
g

Remarque.

• Les résultats ci-dessus sont aussi valables pour des limites infinies avec les conventions usuelles :

ℓ+∞= +∞, ℓ−∞= −∞,
1

0+
= +∞,

1
0−
= −∞,

1
±∞

= 0,

ℓ×∞=∞ (ℓ ̸= 0),∞×∞=∞ (avec règle de multiplication des signes).
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• Les formes indéterminées sont : +∞−∞,
0
0

,
∞
∞

, 0×∞, ,∞0, 1∞ et 00.

La composition est aussi souvent utile :

• soit f : Rn→ R une fonction de plusieurs variables, telle que limx→x0
f (x) = ℓ,

• soit g : R→ R une fonction d’une seule variable, telle que limt→ℓ g(t) = ℓ′,
• alors la fonction de plusieurs variables g ◦ f : Rn → R définie par (g ◦ f )(x) = g

�

f (x)
�

vérifie
limx→x0

(g ◦ f )(x) = ℓ′.

Il existe aussi un théorème « des gendarmes ».

Théorème 1 (Théorème d’encadrement).
Soient f , g, h : Rn→ R trois fonctions définies dans un voisinage U de x0 ∈ Rn.

• Si, pour tout x ∈ U, on a f (x)⩽ h(x)⩽ g(x),
• et si limx0

f = limx0
g = ℓ,

alors h admet une limite au point x0 et lim
x0

h= ℓ.

2.3. Fonctions continues

Définition 6.

1. f : E ⊂ Rn→ R est continue en x0 ∈ E si lim
x→x0

f (x) = f (x0).

2. f est continue sur E si elle est continue en tout point de E.

Par les propriétés des limites, si f et g sont deux fonctions continues en x0, alors :

• la fonction f + g est continue en x0,

• de même f g et f /g (avec g(x) ̸= 0 sur un voisinage de x0) sont continues en x0,

• si h : R→ R est continue, alors h ◦ f est continue en x0.

Exemple 4.

• Les applications définies par (x , y) 7→ x + y , (x , y) 7→ x y , puis toutes les fonctions polynômes en deux
variables x et y sont continues sur R2 (par exemple (x , y) 7→ x2 + 3x y). De la même façon, toutes les
fractions rationnelles en deux variables sont continues là où elles sont définies.

• Comme l’exponentielle est une fonction continue, alors (x , y) 7→ ex y est continue sur R2.

• La fonction définie par f (x , y) = 1p
x2+y2

est continue sur R2 \ {(0,0)}.

Définition 7 (Prolongement par continuité).
Soit f : E ⊂ Rn→ R. Soit x0 un point adhérent à E n’appartenant pas à E. Si f (x) a une limite ℓ lorsque
x → x0, on peut étendre le domaine de définition de f à E ∪ {x0} en posant f (x0) = ℓ. La fonction
étendue est continue en x0. On dit que l’on a obtenu un prolongement de f par continuité au point x0.

Exemple 5.
Soit f : R2 \ {(0, 0)} définie par

f (x , y) =
x y

p

x2 + y2
.

Est-il possible de prolonger f par continuité en (0,0)?

Sur la figure ci-dessous, la question devient simplement : est-il possible de boucher le trou au milieu de la
surface en rajoutant juste un point ?
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Solution.
• Limite à l’origine.

On utilise que |x |⩽
p

x2 + y2 et |y|⩽
p

x2 + y2. Donc

| f (x , y)|=
|x | · |y|
p

x2 + y2
⩽
Æ

x2 + y2 −−−−−−−→
(x ,y)→(0,0)

0.

• Prolongement.
Pour prolonger f en (0,0), on choisit comme valeur la limite obtenue. On pose donc f (0,0) = 0. (On
note encore f : R2→ R la fonction prolongée.)

• Continuité.
Par notre choix de f (0, 0), f est continue en (0, 0). En dehors de l’origine, f est continue comme somme,
produit, composition, inverse de fonctions continues. Conclusion : la fonction prolongée est continue
sur R2 tout entier.

Mini-exercices.

1. Sachant que la limite de f (x , y) = 1+x
1+y en (0,0) est 1, calculer la limite des fonctions suivantes en

(0, 0) : 1+x
1+y + x2 + y2 ; 1+y

1+x ; ln
�

1+x
1+y

�

.

2. Sachant que ln(t)⩽ t − 1 pour tout t > 0, calculer la limite de ln(1+x y)
1+x2+y4 en (0, 0).

3. Soit f définie sur R2 \ {(0,0)} par f (x , y) = x y3

x2+2y2 . f admet-elle une limite en (0,0)? f est-elle

prolongeable par continuité en (0,0)? Mêmes questions avec f (x , y) = x y3

x4+2y4 .

3. Dérivées partielles premières

Rappelons la notion de dérivée pour f : R→ R une fonction d’une seule variable. La dérivée de f en x0 ∈ R,
si elle existe, est :

f ′(x0) = lim
h→0

f (x0 + h)− f (x0)
h

≡
d f
d x
(x0).

Exemple 6.
La fonction f : R→ R définie par f (x) = x2 est dérivable, de dérivée f ′(x0) = 2x0. En effet, lorsque h tend
vers 0, on a :

(x0 + h)2 − x2
0

h
= 2x0 + h −→

h→0
2x0.

Pour une fonction de plusieurs variables, il y a une dérivée pour chacune des variables, qu’on appelle dérivée
partielle.
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3.1. Définition

Définition 8.
Soit f : U ⊂ Rn→ R, où U est un ouvert de Rn. On dit que f admet une dérivée partielle par rapport à
la variable x i au point x0 = (a1, . . . , an) ∈ Rn si la fonction d’une variable

x i 7→ f (a1, . . . , ai−1, x i , ai+1, . . . , an)

est dérivable au point ai. Dit autrement, on définit la dérivée partielle de f par rapport à x i au point
x0 = (a1, . . . , an) par

lim
h→0

f (a1, . . . , ai + h, . . . , an)− f (a1, . . . , an)
h

≡
∂ f
∂ x i
(x0)

si cette limite existe.

C’est la dérivée partielle de f par rapport à x i au point x0. Le symbole « ∂ » se lit « d rond ». Une autre
notation est ∂x i

f (x0) ou bien f ′x i
(x0).

Il y a donc n dérivées partielles au point x0 :
∂ f
∂ x1
(x0)

∂ f
∂ x2
(x0) . . .

∂ f
∂ xn
(x0)

Dans le cas d’une fonction de deux variables (x , y) 7→ f (x , y), on a deux dérivées partielles :

∂ f
∂ x
(x0, y0) = lim

h→0

f (x0 + h, y0)− f (x0, y0)
h

∂ f
∂ y
(x0, y0) = lim

h→0

f (x0, y0 + h)− f (x0, y0)
h

Remarque.
Pour une fonction d’une variable f : R→ R, on distingue le nombre dérivé f ′(x0) et la fonction dérivée f ′

définie par x 7→ f ′(x). Il en est de même avec les dérivées partielles. Pour f : R2→ R :

•
∂ f
∂ x
(x0, y0) et

∂ f
∂ y
(x0, y0) sont des nombres réels.

•
∂ f
∂ x

et
∂ f
∂ y

sont des fonctions de deux variables, par exemple :

∂ f
∂ x

: R2 −→ R

(x , y) 7−→
∂ f
∂ x
(x , y)

3.2. Interprétation géométrique

Pour une fonction d’une variable, la dérivée en un point est la pente de la tangente au graphe de la fonction
en ce point.
Pour une fonction de deux variables (x , y) 7→ f (x , y), les dérivées partielles indiquent les pentes au graphe
de f selon certaines directions (le graphe est ici une surface). Plus précisément :

•
∂ f
∂ x (x0, y0) est la pente au graphe de f en (x0, y0) suivant la direction de l’axe (Ox). En effet, cette
pente est celle de la tangente à la courbe z = f (x , y0) et est donnée par la dérivée de x 7→ f (x , y0) en
x0. C’est donc bien ∂ f

∂ x (x0, y0).

•
∂ f
∂ y (x0, y0) est la pente au graphe de f en (x0, y0) suivant la direction de l’axe (O y).

Reprenons la représentation graphique de la fonction précédente.
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y0
x0

x
y

z

∂ f
∂ x (x0, y0)

y0
x0

x
y

z

∂ f
∂ y (x0, y0)

Sur la figure de gauche, la dérivée partielle ∂ f
∂ x indique la pente en un point d’une tranche parallèle à l’axe

(Ox) (en orange). La variable y est donc considérée comme une constante, égale ici à y0. La variation se
fait par rapport à la variable x et la dérivée est ensuite calculée en x0.

Sur la figure de droite, la dérivée partielle ∂ f
∂ y indique la pente en un point d’une tranche parallèle à l’axe

(O y) (en vert). La variable x est donc considérée comme une constante, égale ici à x0. La variation se fait
par rapport à la variable y et la dérivée est ensuite calculée en y0 .

3.3. Exemples

Dans la pratique, pour calculer une dérivée partielle par rapport à une variable, on utilise rarement la
définition avec les limites. En effet, il suffit de dériver par rapport à cette variable en considérant les
autres variables comme des constantes.

Exemple 7.
Calculer les dérivées partielles premières de la fonction f : R2→ R définie par

f (x , y) = x2e3y .

Solution.
Pour calculer ∂ f

∂ x , qui est la dérivée partielle de f par rapport à x , on considère que y est une constante et
on dérive x2e3y comme si c’était une fonction de x :

∂ f
∂ x
(x , y) = 2xe3y .

Pour l’autre dérivée partielle ∂ f
∂ y , on considère que x est une constante et on dérive x2e3y comme si c’était

une fonction de y :
∂ f
∂ y
(x , y) = 3x2e3y .

Exemple 8.
Soit f : Rn→ R définie par f (x1, . . . , xn) = x2

1 + x2
2 + · · ·+ x2

n. Alors, pour i = 1, . . . , n, on a

∂ f
∂ x i
(x1, . . . , xn) = 2x i .

Exemple 9.
Une fonction peut avoir des dérivées partielles sans être continue !
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La fonction f : R2 → R suivante admet des dérivées partielles en tout point mais n’est pas continue en
(0,0) :

f (x , y) =

( x y
x2 + y2

si (x , y) ̸= (0, 0)

0 en (0,0)

1. Non continuité à l’origine.

Pour les points (t, t), avec t ̸= 0, on a f (t, t) = t2

2t2 =
1
2 qui ne tend pas vers f (0,0) = 0 quand t tend

vers 0. Donc f n’est pas continue en (0, 0).

2. Dérivées partielles en dehors de l’origine.

On se place en un point (x0, y0) ̸= (0, 0). Dans un voisinage de ce point, f est définie par f (x , y) = x y
x2+y2 .

La fonction x 7→ f (x , y0) est donc continue et dérivable au voisinage de x0. La dérivée partielle s’obtient
en dérivant la fonction d’une variable x 7→ f (x , y0). Ainsi, on a

∂ f
∂ x
(x0, y0) =

y3
0 − x2

0 y0

(x2
0 + y2

0 )2
.

De même, en dérivant la fonction y 7→ f (x0, y), on trouve

∂ f
∂ y
(x0, y0) =

x3
0 − x0 y2

0

(x2
0 + y2

0 )2
.

3. Dérivées partielles à l’origine.

Comme la fonction f est définie en (0, 0) par une formule spéciale, il faut revenir à la définition de ce
que sont les dérivées partielles à l’aide des limites :

∂ f
∂ x
(0,0) = lim

h→0

f (0+ h, 0)− f (0, 0)
h

= lim
h→0

0
h
= 0

De même :
∂ f
∂ y
(0,0) = lim

h→0

f (0,0+ h)− f (0,0)
h

= lim
h→0

0
h
= 0

Conclusion : quel que soit le point (x0, y0) ∈ R2, les dérivées partielles ∂ f
∂ x (x0, y0) et ∂ f

∂ y (x0, y0) existent.

3.4. Gradient (facultatif)

Définition

Le gradient est un vecteur dont les coordonnées sont les dérivées partielles. Il est très important en physique
et a des nombreuses applications géométriques, car il indique la direction perpendiculaire aux courbes et
surfaces.

Définition 9.
Soit f : Rn→ R une fonction admettant des dérivées partielles. Le gradient en x = (x1, . . . , xn) ∈ Rn,
noté grad f (x), est le vecteur

grad f (x) =













∂ f
∂ x1
(x)

...
∂ f
∂ xn
(x)













.

Les physiciens notent souvent ∇ f (x) pour grad f (x). Le symbole ∇ se lit « nabla ».
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Pour une fonction f (x , y) de deux variables, au point (x0, y0), on a donc

grad f (x0, y0) =







∂ f
∂ x
(x0, y0)

∂ f
∂ y
(x0, y0)






.

Exemple 10.

• Si f (x , y) = x2 y3 alors grad f (x , y) =

�

2x y3

3x2 y2

�

. Au point (x0, y0) = (2,1), on a grad f (2,1) =

�

4
12

�

.

• Si f (x1, . . . , xn) = x2
1 + x2

2 + · · ·+ x2
n alors grad f (x1, . . . , xn) =







2x1
...

2xn






.

Interprétation géométrique

Soit f : R2 → R une fonction différentiable et soit k ∈ R. On considère les lignes de niveau f (x , y) = k,
c’est-à-dire l’ensemble des (x , y) ∈ R2 qui vérifient l’équation f (x , y) = k.

Proposition 2.
Le vecteur gradient grad f (x0, y0) est orthogonal à la ligne de niveau de f passant au point (x0, y0).

Sur ce premier dessin, vous avez (en rouge) la ligne de niveau passant par le point (x0, y0). En ce point est
dessiné (en vert) un vecteur tangent v et la tangente à la ligne de niveau. Le vecteur gradient (en bleu) est
orthogonal à la ligne de niveau en ce point.

x

y

grad f (x0, y0)

v
T

(x0, y0)

En chaque point du plan part un vecteur gradient. Ce vecteur gradient est orthogonal à la ligne de niveau
passant par ce point.
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x

y

Considérons les lignes de niveau f (x , y) = k d’une fonction f : R2→ R. On se place en un point (x0, y0).
On cherche dans quelle direction se déplacer pour augmenter le plus vite la valeur de f .

Proposition 3.
Le vecteur gradient grad f (x0, y0) indique la direction de plus forte pente à partir du point (x0, y0).

Autrement dit, si l’on veut passer le plus vite possible du niveau a à un niveau b > a, à partir d’un point donné
(x0, y0) de niveau f (x0, y0) = a, alors il faut démarrer en suivant la direction du gradient grad f (x0, y0).

x

y

(x0, y0)

f = a

f = b

grad f (x0, y0)

Comme illustration, un skieur voulant aller vite choisit la plus forte pente descendante en un point de la
montagne : c’est la direction opposée au gradient.

Mini-exercices.

1. En utilisant seulement la définition avec les limites, calculer les dérivées partielles de la fonction f
définie par f (x , y) = x2 y .

2. Calculer les dérivées partielles de la fonction f définie par f (x , y) = ex y2
. Même question avec

f (x , y) = x2 + 3y2 − 2sin(x y) ; f (x , y) =
p

1− x2 − y2 ; f (x , y, z) = x y2 + ze y/z ; f (x1, . . . , xn) =
x1 ln(x1 + · · ·+ xn).

3. Soit f : R2 → R définie par f (x , y) = 0 si 0 < y < x2 et f (x , y) = 1 sinon. Montrer que f a des
dérivées partielles en (0, 0), mais n’est pas continue en (0, 0).
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4. Dérivées partielles d’ordre 2

4.1. Définition

Pour les fonctions d’une variable, la dérivée seconde s’obtient en dérivant la dérivée première qui est une
fonction :

f
′′
(x) = ( f

′
(x))

′
=

d
d x

�

d f
d x

�

=
d2 f
d x2

.

Soit f : R2→ R une application différentiable. Les deux dérivées partielles ∂ f
∂ x et ∂ f

∂ y sont aussi des fonctions
de R2 dans R ; supposons que ce soient aussi des applications différentiables. On peut alors calculer les
deux dérivées partielles de ∂ f

∂ x :

∂

∂ x

�

∂ f
∂ x

�

et
∂

∂ y

�

∂ f
∂ x

�

et les deux dérivées partielles de ∂ f
∂ y :

∂

∂ x

�

∂ f
∂ y

�

et
∂

∂ y

�

∂ f
∂ y

�

.

On note ces dérivées partielles :

∂ 2 f
∂ x2

∂ 2 f
∂ y∂ x

∂ 2 f
∂ x∂ y

∂ 2 f
∂ y2

Ce sont des fonctions de R2 dans R.

Plus généralement, pour f : Rn→ R, on note ∂ f
∂ x i

: Rn→ R les dérivées partielles d’ordre 1 (1 ⩽ i ⩽ n) et
∂ 2 f
∂ x j∂ x i

les dérivées partielles d’ordre 2 (1 ⩽ i, j ⩽ n).

4.2. Théorème de Schwarz

Pour f : R2→ R, il y a quatre dérivées partielles secondes à calculer, mais en général deux d’entre elles sont
égales. En effet,

∂ 2 f
∂ y∂ x

(x , y) =
∂ 2 f
∂ x∂ y

(x , y).

Dans ce cas, il n’y a donc que trois dérivées partielles à calculer car le résultat ne dépend pas de l’ordre dans
lequel on effectue les dérivations partielles. C’est un phénomène général que l’on va détailler.

Définition 10.
Une fonction f : Rn → R est de classe C 2 si f est de classe C 1 (c’est-à-dire ses dérivées partielles
existent et sont continues) et si ses dérivées partielles sont aussi de classe C 1.

Théorème 2 (Théorème de Schwarz).
Soit f : U ⊂ Rn→ R une fonction de classe C 2. Pour tous i, j ∈ {1, . . . , n}, on a :

∂

∂ x i

�

∂ f
∂ x j

�

=
∂

∂ x j

�

∂ f
∂ x i

�

Ainsi, pour f : R2→ R de classe C 2, on a :
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∂ 2 f
∂ y∂ x

(x , y) =
∂ 2 f
∂ x∂ y

(x , y)

Pour f : R3→ R de classe C 2, il y a 9 dérivées partielles d’ordre 2, mais seulement 6 calculs à faire :

∂ 2 f
∂ x2

∂ 2 f
∂ y2

∂ 2 f
∂ z2

∂ 2 f
∂ y∂ x

=
∂ 2 f
∂ x∂ y

∂ 2 f
∂ z∂ x

=
∂ 2 f
∂ x∂ z

∂ 2 f
∂ z∂ y

=
∂ 2 f
∂ y∂ z

Le contre-exemple suivant, qui peut être omis lors d’une première lecture, prouve qu’il est nécessaire d’avoir
une fonction de classe C 2. Si cette hypothèse manque alors les dérivées partielles croisées peuvent ne pas
être égales.

Exemple 11.
Soit f : R2→ R la fonction définie par

f (x , y) =
x y3

x2 + y2
si (x , y) ̸= (0, 0) et f (0, 0) = 0.

On vérifie que f est de classe C 1 sur R2 et que

∂ f
∂ x
(x , y) =







y5 − x2 y3

(x2 + y2)2
si (x , y) ̸= (0,0)

0 si (x , y) = (0,0)

et

∂ f
∂ y
(x , y) =







3x3 y2 + x y4

(x2 + y2)2
si (x , y) ̸= (0,0)

0 si (x , y) = (0,0).
Le taux d’accroissement

∂ f
∂ x (0, y)− ∂ f

∂ x (0,0)

y − 0
= 1 −→ 1

y→0

ce qui montre que
∂ 2 f
∂ y∂ x

(0, 0) = 1. De même, le taux d’accroissement

∂ f
∂ y (x , 0)− ∂ f

∂ y (0, 0)

x − 0
= 0 −→ 0

x→0

ce qui montre que
∂ 2 f
∂ x∂ y

(0,0) = 0. Les dérivées partielles croisées ne sont pas égales en (0,0). On en

déduit que l’une (au moins) des dérivées partielles secondes
∂ 2 f
∂ x∂ y

ou
∂ 2 f
∂ y∂ x

n’est pas continue en (0, 0).

Autrement dit, la fonction f n’est pas de classe C 2 en (0,0) et le théorème de Schwarz ne s’applique pas.

4.3. Hessienne

La matrice hessienne est la matrice des dérivées partielles d’ordre 2.
Soit f : Rn→ R une fonction de n variables. La matrice hessienne de f en x = (x1, . . . , xn) est la matrice
n× n de forme générale :

H f (x) =

�

∂ 2 f
∂ x i∂ x j

(x)

�

1⩽i, j⩽n

Pour une fonction de classe C 2, d’après le théorème de Schwarz, c’est une matrice carrée symétrique
c’est-à-dire que les éléments ai j de la matrice A de format n vérifient ai j = a ji , ∀i, j ∈ 1, . . . , n.
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Dans le cas d’une fonction de deux variables (n= 2) :

H f (x , y) =

 

∂ 2 f
∂ x2 (x , y) ∂ 2 f

∂ x∂ y (x , y)
∂ 2 f
∂ y∂ x (x , y) ∂ 2 f

∂ y2 (x , y)

!

Pour trois variables (n= 3), la matrice hessienne (à évaluer en (x , y, z)) vaut :

H f =







∂ 2 f
∂ x2

∂ 2 f
∂ x∂ y

∂ 2 f
∂ x∂ z

∂ 2 f
∂ y∂ x

∂ 2 f
∂ y2

∂ 2 f
∂ y∂ z

∂ 2 f
∂ z∂ x

∂ 2 f
∂ z∂ y

∂ 2 f
∂ z2






.

Exemple 12.
Calculons la matrice hessienne de f (x , y) = x y2 + x4 − y4.
On calcule d’abord

∂ f
∂ x
(x , y) = 4x3 + y2 ∂ f

∂ y
(x , y) = 2x y − 4y3.

On a donc

H f (x , y) =

 

∂ 2 f
∂ x2 (x , y) ∂ 2 f

∂ x∂ y (x , y)
∂ 2 f
∂ y∂ x (x , y) ∂ 2 f

∂ y2 (x , y)

!

=

�

12x2 2y
2y 2x − 12y2

�

.

Mini-exercices.

1. Soit f (x , y) = x3 + 5x2 y − y2. Calculer les dérivées partielles d’ordre 1 de f . Calculer les dérivées
partielles d’ordre 2 de f . Vérifier la validité du théorème de Schwarz. Calculer la matrice hessienne de
f . Calculer les dérivées partielles d’ordre 3 de f .

2. Soit f (x , y) = xex2−y2
. Calculer les dérivées partielles d’ordre 1 et d’ordre 2 de f . Calculer la matrice

hessienne de f .

3. Soit f (x , y, z) = x y2 ln(z). Déterminer l’ensemble de définition de f . Calculer les dérivées partielles
d’ordre 1 et d’ordre 2 ainsi que la matrice hessienne de f .

5. Optimisation

Comment trouver le maximum (ou le minimum) d’une fonction f : Rn→ R? Cette section est consacrée
à l’étude de l’existence des extremums. Nous apprendrons à repérer les extremums locaux (qui ne sont
pas nécessairement des minimums ou maximums globaux). Pour mieux comprendre ce qui se passe en
plusieurs variables, on commence par revoir rapidement le cas d’une variable.

5.1. Rappel du cas d’une variable

Soit f : R→ R une fonction d’une variable.

• f admet un maximum local en x0 ∈ R s’il existe un intervalle ouvert I contenant x0 tel que :

pour tout x ∈ I f (x)⩽ f (x0).

• f admet un minimum local en x0 ∈ R s’il existe un intervalle ouvert I contenant x0 tel que :

pour tout x ∈ I f (x)⩾ f (x0).

• f admet un extremum local en x0 ∈ R si f admet un maximum local ou bien un minimum local en ce
point.
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• f admet un point critique en x0 ∈ R si f ′(x0) = 0. Géométriquement, c’est un point de tangente
horizontale.

• Proposition : si f dérivable admet un minimum local ou un maximum local en x0, alors f ′(x0) = 0.
Autrement dit, si x0 est un extremum local alors c’est un point critique.

• La réciproque n’est pas toujours vraie. Par exemple, pour f : x 7→ x3, le point x0 = 0 est un point critique,
mais ce n’est ni un maximum local ni un minimum local (c’est un point d’inflexion).

x

y maximums locaux

minimum local

maximum global

x

y

Sur la figure de gauche : des exemples de minimum local, maximum local, maximum global ; il n’y a pas de
minimum global sur R. Sur la figure de droite : un extremum local est nécessairement un point critique.

La recherche pratique des extremums locaux pour une fonction d’une variable se passe donc ainsi :

1. On recherche les points critiques donnés par l’équation f ′(x) = 0.

2. Pour chaque point critique x0, on calcule la dérivée seconde :

• si f ′′(x0)> 0, alors f admet un minimum local en x0,

• si f ′′(x0)< 0, alors f admet un maximum local en x0,

• si f ′′(x0) = 0, alors il faut approfondir l’étude.

Exemple 13.

• f : x 7→ x2, minimum local en 0, on a f ′(0) = 0 et f ′′(0)> 0.

• f : x 7→ −x2, maximum local en 0, on a f ′(0) = 0 et f ′′(0)< 0.

• f : x 7→ x3, ni minimum ni maximum local en 0, on a f ′(0) = 0 et f ′′(0) = 0.

f (x) = x2 f (x) = −x2 f (x) = x3

Remarque.
Lorsque f : [a, b]→ R est définie sur un intervalle compact, il faudra en plus étudier le comportement de f
en a et en b (c’est-à-dire au bord du domaine de définition). Comme l’ensemble de départ est compact, on
a la garantie de l’existence d’extremums globaux.
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5.2. Cas de deux variables

Soit f : U → R une fonction de deux variables, où U est un ouvert de R2.

Définition 11.
On dit que f admet un maximum local (resp. minimum local) en (x0, y0) ∈ U s’il existe un disque
ouvert D ⊂ U , centré en (x0, y0), tel que :

∀(x , y) ∈ D f (x , y)⩽ f (x0, y0)

(resp. f (x , y)⩾ f (x0, y0)).
On dit que f admet un extremum local en (x0, y0) si elle y admet un maximum local (resp. minimum
local).

On suppose f de classe C 2 sur un ouvert U , c’est-à-dire que ses dérivées partielles jusqu’à l’ordre 2 existent
et sont continues.

Proposition 4.
Si f admet un extremum local en (x0, y0) d’un ouvert U, alors

∂ f
∂ x
(x0, y0) = 0 et

∂ f
∂ y
(x0, y0) = 0.

Démonstration. La fonction d’une variable x 7→ f (x , y0) admet un extremum local en x0 sur un ouvert de
R, donc sa dérivée, qui est ∂ f

∂ x (x , y0), s’annule en x0. On fait de même avec y 7→ f (x0, y).

Autrement dit, si f possède un minimum ou maximum local en un point, alors toutes les dérivées
partielles sont nulles en ce point (le gradient de f est le vecteur nul en ce point). Les points de U sont
appelés points critiques de f . Le résultat précédent dit que les extremums d’une fonction sur un ouvert ne
peuvent se produire qu’en un point critique. La réciproque est fausse.

Comme pour les fonctions d’une variable, ce premier critère n’est pas suffisant pour caractériser un
maximum ou un minimum. Il nous faut un second critère en utilisant la hessienne (les dérivées à l’ordre
2).

Pour une fonction f : R2 → R, nous utiliserons le critère de Monge, qui fournit un critère simple pour
détecter un minimum ou un maximum local. Il faut pour cela savoir calculer les mineurs d’une matrice.

Définition 12.
Soit A= (ai j)1⩽i, j⩽n une matrice carrée symétrique de taille n à coefficients dans R.
Soit k tel que 1 ⩽ k ⩽ n.
On appelle mineur d’ordre k, noté Mk(A), le déterminant de la sous-matrice carrée de A de taille k
obtenue en partant d’en haut à gauche de A. Pour une matrice de taille n, il y a donc n mineurs à calculer.

Exemple 14.
Soit la matrice

A=





1 2 0
2 2 1
0 1 6





• Le mineur d’ordre 1 : M1(A) = a11 = 1.

• Le mineur d’ordre 2 : M2(A) = det

�

1 2
2 2

�

= 2− 4= −2.

• Le mineur d’ordre 3 : M3(A) = det(A) = . . .
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Théorème 3 (Critère de Monge).
Soit f : R2→ R une fonction de classe C 2 et soit (x0, y0) un point critique de f . Soit la matrice Hessienne
en le point critique :

H f (x0, y0) =

 

∂ 2 f
∂ x2 (x0, y0)

∂ 2 f
∂ x∂ y (x0, y0)

∂ 2 f
∂ y∂ x (x0, y0)

∂ 2 f
∂ y2 (x0, y0)

!

Alors :

• si M1(H f (x0, y0))> 0 et M2(H f (x0, y0))> 0, alors (x0, y0) est un minimum local de f ;

• si M1(H f (x0, y0))< 0 et M2(H f (x0, y0))> 0, alors (x0, y0) est un maximum local de f ;

• si M2(H f (x0, y0)) < 0, alors (x0, y0) n’est ni un minimum local ni un maximum local : c’est un
point-selle ;

• si M2(H f (x0, y0)) = 0, on ne peut pas conclure directement (il faut approfondir l’étude).

Exemple 15.
f (x , y) = x2 + y2. C’est un exemple de minimum local atteint en (0, 0).

Le point (0,0) est l’unique point critique de f . On calcule la hessienne : H f (0,0) =
�

2 0
0 2

�

. Comme
M1(H f (x0, y0)) = 2> 0 et M2(H f (x0, y0)) = 4> 0, (0,0) est bien un minimum local de f .

Exemple 16.
f (x , y) = −x2 − y2. C’est un exemple de maximum local atteint en (0,0). A chercher.
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Exemple 17.
f (x , y) = x2 − y2. C’est un exemple de point-selle en (0, 0).

On trouve un seul point critique : (0,0). On calcule H f (0,0) =
�

2 0
0 −2

�

. Comme M2(H f (x0, y0)) = −4< 0,
(0,0) correspond bien à un point-selle.
Un autre nom pour cette surface est un col (en référence à un col en montagne). En effet, le point (0, 0, 0)
est le point de passage le moins haut pour passer d’un versant à l’autre de la montagne.

Pour résumer, la recherche pratique des extremums locaux pour une fonction à plusieurs variables se passe
donc ainsi :

1. On recherche les points critiques donnés (x0, y0) par le système de dérivées partielles égales à 0.

2. Pour chaque point critique (x0, y0) trouvé, on calcule la hessienne :

• si tous les mineurs de la matrice hessienne sont positifs, alors (x0, y0) est un minimum local de f ;

• s’il y a alternance de signe en commençant par le négatif, alors (x0, y0) est un maximum local de f ;

• si M2(H f (x0, y0)) < 0, alors (x0, y0) n’est ni un minimum local ni un maximum local : c’est un
point-selle ;

• si M2(H f (x0, y0)) = 0, on ne peut pas conclure directement (il faut approfondir l’étude).

5.3. Autres exemples

Exemple 18.
Soit f : R2→ R définie par f (x , y) = x3 + y3 − 3x y .
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• Dérivées partielles.
∂ f
∂ x
(x , y) = 3x2 − 3y

∂ f
∂ y
(x , y) = 3y2 − 3x

• Points critiques. Ce sont les points où ∂ f
∂ x (x , y) = 0 et ∂ f

∂ y (x , y) = 0 en même temps. On a donc
simultanément x2 = y et y2 = x (ce qui implique x , y ⩾ 0). D’où x4 = y2 = x dont les solutions
positives sont x = 0 (et alors y = 0) et x = 1 (et alors y = 1). Ainsi, les points critiques sont (0,0) et
(1,1).

• Dérivées partielles secondes.

∂ 2 f
∂ x2

(x , y) = 6x
∂ 2 f
∂ x∂ y

(x , y) = −3
∂ 2 f
∂ y2

(x , y) = 6y

• Étude en (0, 0).

H f (0,0) =

�

0 −3
−3 0

�

M1(H f (0, 0)) = 0 et M2(H f (0, 0)) = −9< 0, donc (0, 0) est un point-selle.

• Étude en (1,1).

H f (1,1) =

�

6 −3
−3 6

�

M1(H f (0,0)) = 6 et M2(H f (0, 0)) = 36− 9= 25> 0, donc (1, 1) est un minimum local de f .

Exemple 19.
Voici un exemple où le critère ne permet pas de conclure. Il faut terminer l’étude à la main.
Soit f (x , y) = 2x3 − y4 − 3x2. On trouve deux points critiques : (0,0) et (1, 0). Par ailleurs :

H f (0,0) =

�

−6 0
0 0

�

et H f (1,0) =

�

6 0
0 0

�

.

On ne peut pas conclure car M2(H f (0,0)) et M2(H f (1, 0)) sont nuls. On étudie chaque cas à la main.

• En (0,0). Écrivons f (x , y) = x2(2x − 3)− y4. Pour |x |⩽ 1, on a 2x − 3 ⩽ 0, et donc

f (x , y) = x2(2x − 3)− y4 ⩽ 0.

Comme f (0, 0) = 0, alors f admet un maximum local au point (0,0).
• En (1,0). Tout d’abord, on se limite aux points de la forme (1, y) (autour de y0 = 0) :

f (1, y) = −1− y4 ⩽ −1= f (1, 0)

Ensuite, on se limite aux points de la forme (x , 0) (autour de x0 = 1, par exemple pour x tel que
|x − 1|⩽ 1) :

f (x , 0) = (x − 1)2(2x + 1)− 1 ⩾ −1= f (1, 0)
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Donc, en (1,0), ce n’est ni un minimum ni un maximum : c’est un point-selle.

Mini-exercices.

1. Soit f (x , y) = exp(−1
3 x3 + x − y2). Déterminer les deux points critiques de f et la nature

(minimum/maximum/point-selle) de chacun d’entre eux.

2. Soit f (x , y) = x3−3x y2. Déterminer le point critique de f et sa nature. Le graphe de f s’appelle une
« selle de singe ».

3. Soit f (x , y) = x4+ y4− 2x2. Déterminer les trois points critiques de f . Le critère de Monge permet-il
de conclure? Déterminer quand même la nature de chacun de ces points critiques.
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6. Optimisation sous contrainte d’équation linéaire

L’idée ici est de réduire la dimension du problème à traiter en procédant par substitution.
Pour cette année, nous allons utiliser un exemple classique simple : le problème du consommateur dans
une économie à deux biens. Plutôt que de manipuler un problème complexe, on va se ramener ici à un
problème d’optimisation à une variable.

Résolution du programme de maximisation sous contrainte si n= 2

max
(x1;x2)

u(x1; x2) = x1/2
1 x1/2

2

sc : p1 x1 + p2 x2 ⩽ R

1. on applique une transformation croissante à la fonction d’utilité pour en simplifier l’expression.

2. On sature la contrainte de budget p1 x1 + p2 x2 = R.

3. On exprime x2 en fonction de x1.

4. On remplace x2 dans la fonction d’utilité transformée pour se ramener à un problème de minimi-
sation à une variable x1 sans contrainte.

5. On résoud la CPO ∂ (.)
∂ x1
|x1=x⋆1

= 0 pour trouver x⋆1.

6. On déduit x⋆2 de la solution en utilisant la contrainte budgétaire.

⇒ On a donc x⋆1(p1; p2; R) et x⋆2(p1; p2; R), les fonctions de demande de biens à l’optimum.

1. On va transformer la fonction d’utilité à maximiser pour la rendre plus facile à manipuler. Prenons par
exemple : v = 2 ln u. C’est une transformation croissante donc cela ne change pas la solution du problème.

v = 2 ln u(x1; x2) = 2 ln
�

x1/2
1 x1/2

2

�

= 2 ln
�

x1/2
1

�

+ 2 ln
�

x1/2
2

�

= 2
1
2

ln (x1) + 2
1
2

ln (x2)

= ln (x1) + ln (x2)

2. La contrainte budgétaire est forcément saturée si l’agent est rationnel : l’argent non dépensé ne sert pas à
la consommation. L’utiliser pourrait permettre de consommer plus et donc d’augmenter la satisfaction.

p1 x1 + p2 x2 = R

3. On a notre contrainte linéaire. Comme on a une relation entre x1 et x2, isolons x2 :

x2 =
R
p2
−

p1

p2
x1

4. On va procéder par substitution. On remplace x2 dans l’objectif :

v = ln (x1) + ln (x2)

= ln (x1) + ln
�

R− p1 x1

p2

�

= ln (x1) + ln (R− p1 x1)− ln (p2)



FONCTIONS DE PLUSIEURS VARIABLES 6. OPTIMISATION SOUS CONTRAINTE D’ÉQUATION LINÉAIRE 147

Le programme de maximisation d’une fonction à 2 variables sous contrainte peut donc se réécrire
comme un programme de maximisation d’une fonction à 1 variable SANS contrainte :







max
(x1;x2)

x1/2
1 x1/2

2

sc : p1 x1 + p2 x2 ⩽ R
⇔ max

x1
{ln (x1) + ln (R− p1 x1)− ln (p2)}
︸ ︷︷ ︸

=v(x1)

5. On résoud : on écrit la Condition du Premier Ordre (CPO) :

dv
d x1

=
d {ln (x1) + ln (R− p1 x1)− ln (p2)}

d x1

=
d {ln (x1)}

d x1
+

d {ln (R− p1 x1)}
d x1

−
d {ln (p2)}

d x1

=
1
x1
+
−p1

R− p1 x1
− 0

=
1
x1
−

p1

R− p1 x1

En la solution x1 = x⋆1, la dérivée première est nulle :

dv
d x1
(x⋆1) = 0⇔

1
x⋆1
−

p1

R− p1 x⋆1
= 0

⇔
1
x⋆1
=

p1

R− p1 x⋆1
⇔ R− p1 x⋆1 = p1 x⋆1
⇔ R= 2p1 x⋆1

⇔ x⋆1 =
R

2p1

6. On sait que :

x2 =
R
p2
−

p1

p2
x1⇔ x⋆2 =

R
p2
−

p1

p2
x⋆1

⇔ x⋆2 =
R
p2
−

p1

p2

R
2p1

⇔ x⋆2 =
R
p2
−

R
2p2

⇔ x⋆2 =
2R
2p2
−

R
2p2

⇔ x⋆2 =
R

2p2

La décision optimale du consommateur est le panier de biens E⋆ =
�

x⋆1 =
R

2p1
; x⋆2 =

R
2p2

�

.

On sait qu’on a trouvé la bonne solution parce que la décision du consommateur s’exprime en fonction des
variables exogènes du problème R, p1 et p2.
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x2

x10 R
p1

R
p2

x⋆1

x⋆2
E⋆

La représentation graphique avec les lignes de niveaux de la fonction d’utilité dans le plan (0, x1, x2) nous
montre que plus on va vers le Nord-Est du plan (plus on consomme), plus l’utilité augmente. Le programme
sans contrainte aurait donc pour "solution" des quantités infinies.

La contrainte budgétaire permet de trouver une solution finie au problème en le point E⋆. La contrainte est
donc effective et influence le résultat du programme d’optimisation.

Remarque.
Nous aurons recours à cette méthode en première année. Le prochain cours d’outils math en L2 permettra
d’étudier une méthode plus générale utilisant le Lagrangien.

7. Exercices

TD

Exercice 103
Soit la fonction f (x1, x2) = 2x2

1 + 5x2
2 − 4x1 x2 + 6x2 + 4.

1. Résoudre le système des conditions du premier ordre










∂ f (x1, x2)
∂ x1

= 0

∂ f (x1, x2)
∂ x2

= 0

pour déterminer un extremum possible.

2. Calculer la matrice hessienne

H =









∂ 2 f (x1, x2)
∂ x2

1

∂ 2 f (x1, x2)
∂ x1∂ x2

∂ 2 f (x1, x2)
∂ x2∂ x1

∂ 2 f (x1, x2)
∂ x2

2









en le point candidat trouvé à la question précédente (si nécessaire).
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3. Calculer les mineurs de la matrice hessienne. Le point candidat est-il un maximum? Un mini-
mum ?

Exercice 104
Soit un consommateur qui envisage d’acquérir les quantités x1 et x2 de biens 1 et 2 (dont les prix
respectifs sont p1 et p2), qui dispose d’un revenu R et dont la fonction d’utilité est U(x1, x2) = x1 x2.

1. Ecrire la contrainte budgétaire du consommateur.

2. Ecrire le programme du consommateur.

3. En se plaçant à l’optimum, ré-écrire le programme par substitution.

4. Le résoudre.

Entraînement

Exercice 105
Soit un échantillon de taille N . Soit la droite de régression yi = a+ bx i + ei. On veut estimer les
valeurs de a et de b par la méthode des Moindres Carrés Ordinaires. Pour cela, il faut résoudre le
programme de minimisation suivant : min

a,b

∑N
i=1 e2

i .

1. Ecrire les dérivées partielles du problème en fonction de a et de b.

2. Les conditions du premier ordre s’annulent en les solutions ba et bb. Résoudre le système de deux
équations à deux inconnues par substitution.

3. Construire la matrice hessienne (la matrice des dérivées partielles au second ordre du problème
en fonction de a et de b).

4. Montrez qu’on est bien à un minimum.

Exercice 106
Soit une suite de n variables aléatoires (X1, X2, . . . , Xn) identiquement et indépendamment distri-

buées selon une loi normale N (m,σ2) de densité de probabilités φ(x) =
1

p
2πσ2

e
−
(x −m)2

2σ2 . On

veut estimer les paramètres m et σ2 en résolvant le programme du maximum de vraisemblance :
max
m,σ2

�∑n
i=1 lnφ(x i)

	

.

1. Ecrire les CPO et montrer que Òm= X et bσ2 =

∑n
i=1(X i − X )2

n
.

2. Construire la matrice hessienne en la solution trouvée.

3. Montrer qu’on est bien à un maximum.
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