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Préface

Dans ce cours, nous reprenons les premiers outils mathématiques nécessaires a I’ Economie et la Gestion
dont vous aurez besoin immédiatement dans les autres cours et plus tard. Ces notions seront approfondies
en L2 et/ou L3, en fonction des besoins.

Beaucoup a déja été abordé et acquis au lycée. Pour certains, ce sera donc de 'approfondissement, de la
consolidation et quelques nouveautés. Pour les autres, ce n’est pas grave : on reprend tout en compliquant
progressivement (et encore, c’est tout relatif).

Les efforts a fournir seront cependant importants. Le temps sans cours doit servir au travail personnel :
acquérir les notions et comprendre nécessite du temps, de la concentration et de la pratique. Il vous faudra
donc de la discipline et de la régularité.

Il vous faudra
» comprendre le cours (en cours pour gagner du temps),
e connaitre les définitions essentielles,
travailler les exemples (les démonstrations vous permettront de mieux comprendre si vous étes curieux),
o préparer les exercices qui seront discutés en TD pour pouvoir poser vos questions si besoin...
et préparer les exercices supplémentaires qui ne seront PAS corrigés en TD. Le travail en groupe pendant

le semestre est encouragé.

En plus de ce document, les ressources a votre disposition :
« le site internet Exo7 oli vous trouverez des vidéos et des exercices corrigés.
« Mathématiques en Economie-Gestion, S. Rossignol, Dunod, 2015.
o Mathématiques de base pour économistes, Y. Dodge, Springer 2007.
o Mathématiques pour économistes, C. Simon et L. Blume, De Boeck Université, 1997.
o Cours de mathématiques pour économistes, P Michel, Economica, 1989.

L'évaluation se fera par deux contrdles (& mi-parcours et en fin de parcours) comptant chacun pour 50%.

Enfin, mes remerciements vont aux membres de ’équipe Exo7 qui a permis I’élaboration rapide de ce
document et 4 Stéphane Adjemian pour ses notes de cours de Calcul Economique 1 que ce cours remplace,
a Stéphane Adjemian, Simon Petit-Renaud, Anthony Terriau et Xavier Fairise pour les discussions dans
I'élaboration du programme de mathématiques de Licence.
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Systemes
linéaires

Vidéo m partie 1. Introduction aux systémes d’équations linéaires

Introduction aux systemes d’équations linéaires

L'algebre linéaire est un outil essentiel pour toutes les branches des mathématiques, en particulier lorsqu’il
s’agit de modéliser puis résoudre numériquement des problemes issus de divers domaines : des sciences
physiques ou mécaniques, des sciences du vivant, de la chimie, de 'économie, des sciences de I'ingénieur...
Les systemes linéaires interviennent a travers leurs applications dans de nombreux contextes, car ils forment
la base calculatoire de I'algeébre linéaire. Ils permettent également de traiter une bonne partie de la théorie
de I'algebre linéaire en dimension finie. C’est pourquoi ce cours commence avec une étude des équations
linéaires et de leur résolution.

Le but de ce chapitre est essentiellement pratique : il s’agit de résoudre des systémes linéaires. La partie
théorique sera étudiée dans le chapitre « Matrices » du cours Outils Math 2, ’année prochaine.

1. Résolution des systémes linéaires de deux équations

L’équation d’une droite dans le plan (O, x, y) s’écrit
ax+by=e

ol a, b et e sont des parametres réels, a et b n’étant pas simultanément nuls. Cette équation s’appelle
dans les variables (ou inconnues) x et y.

Par exemple, 2x + 3y = 6 est une équation linéaire, alors que les équations suivantes ne sont pas des
équations linéaires :

2x+y?=1 ou y=sin(x) ou x=3.

Considérons maintenant deux droites D; et D, et cherchons les points qui sont simultanément sur ces deux
droites. Un point (x, y) est dans l'intersection D; N D, s’il est solution du systéme :

{ ax+by = e

cx+dy = (5)

Trois cas se présentent alors :

1. Les droites D; et D, se coupent en un seul point. Dans ce cas, illustré par la figure de gauche, le systéme
(S) a une seule solution.

2. Les droites D; et D, sont paralleles. Alors le systeme (S) n’a pas de solution. La figure du centre illustre
cette situation.


http://www.youtube.com/watch?v=0uYJ3RNL5SU
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3. Les droites D; et D, sont confondues et, dans ce cas, le systeme (S) a une infinité de solutions.
y A Dl y A D2 y A
/ Dy =D,

x / x x
[ "\ /

FIGURE 1.1 - Toutes les solutions possibles a un systeme linéaire de 2 équations.

DZ\

Nous verrons plus loin que ces trois cas de figure (une seule solution, aucune solution, une infinité de
solutions) sont les seuls cas qui peuvent se présenter pour n'importe quel systéme d’équations linéaires.

1.1. Résolution par substitution

Pour savoir s'il existe une ou plusieurs solutions a un systéme linéaire et les calculer, une premiére méthode

est la . Par exemple pour le systéme :
3x+2y =1
y T (S)
2x =7y = =2

Nous réécrivons la premiere ligne 3x + 2y = 1 sous la forme y = %— %x. Et nous remplacons (nous
substituons) le y de la seconde équation, par I'expression % — %x. Nous obtenons un systéme équivalent :

_ 1 3
y = 373X

{ 2x—7(3—3x) = -2

La seconde équation est maintenant une expression qui ne contient que des x (1 équation a 1 inconnue
donc) et on peut la résoudre :

13
Yy = 3—3X y
{(2+7x§)x = —22+ZZ {x
2 2

|—
|
N w
=

et

Il ne reste plus qu’a remplacer dans la premiére ligne la valeur de x obtenue :
_ 8
X = 55

Le systéme (S) admet donc une solution unique (%, %). L'ensemble des solutions est donc

=10 s)})



SYSTEMES LINEAIRES 1. RESOLUTION DES SYSTEMES LINEAIRES DE DEUX EQUATIONS 3

1.2. Résolution par la méthode de Cramer

On note |f} 3 =ad—bcle . On considere le cas d'un systéme de 2 équations a 2 inconnues :
ax+by = e
{ cx+dy = f

Si ad — bc # 0, on trouve une unique solution dont les coordonnées (x, y) sont :

e b a e
f d c f
_ab _ab
c d c d

Notez que le dénominateur égale le déterminant pour les deux coordonnées et est donc non nul. Pour le
numérateur de la premiére coordonnée x, on remplace la premiére colonne par le second membre ; pour la
seconde coordonnée y, on remplace la seconde colonne par le second membre.

Exemple 1.

tx —2y
3x+ty
Le déterminant associé au systéme est \g —tz| = t? + 6 et ne s’annule jamais. Il existe donc une unique
solution (x, y) et elle vérifie :

Résolvons le systéme { suivant la valeur du parametre t € R.

1 ¢t t+2
X = = N
t2+6 246 Y

t 6, t 6 )

1.3. Résolution par inversion de matrice

‘1 -2

En termes matriciels, le systéme linéaire

ax+by = e
cx+dy =

est équivalent a

o a=(Ca) x=() ()

Si le déterminant de la matrice A est non nul, c’est-a-dire si ad — bc # 0, alors la matrice A est inversible et
2 1 d -—b
A= .
ad—bc\—c a

L'unique solution X = (f,) du systeme est donnée par

X=A"lv.

AX =Y
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Exemple 2.
x+y =1

9 suivant la valeur du parametre t € R.
x+tly = t

Résolvons le systéme {
Le déterminant du systéme est | % tlz | =t2—1.

Premier cas. t # +1 et t # —1. Alors t> — 1 # 0. La matrice A = (] 2 ) est inversible d'inverse A™! =
L (# 7!). Etla solution X = (} ) est

=1
2 2 t
weaiyo L (€ S (1\__L_(?-0\_(=)
t2—1\-1 1 J\t) e2—1\t—1 =

Pour chaque t # £1, I'ensemble des solutions est

EEE

x+y

et les deux équations sont identiques. Il y
x+y

Deuxieme cas. t = +1. Le systéme s’écrit alors :{

a une infinité de solutions :
S = {(x,l—x)lxeR}.

. \ o x + . . .
Troisieme cas. t = —1. Le systeme s’écrit alors : { N J 1 les deux équations sont clairement
x+y = —
incompatibles et donc
S =a.
Mini-exercices.
x—2y = -1

et résoudre le systéme linéaire de trois facons

1. Tracer les droites d’équations {
—x+3y

. o . . . 2x—y = 4
différentes : substitution, méthode de Cramer, inverse d'une matrice. Idem avec Y
3x+3y = =5

; . \ 4x—3y =t

2. Résoudre suivant la valeur du parametre t €R : { 5 Y 2
xX—y =

. . . \ tx—y

3. Discuter et résoudre suivant la valeur du parametre t € R : . Idem avec
x+(t—=2)y = -1

(t—Dx+y =1
2x+ty = -1
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2. Un début de généralisation

Dans l'espace (O, x, ¥, %), une équation linéaire est ’équation d’un plan

ax+by+cz=d
(on suppose ici que a, b et ¢ ne sont pas simultanément nuls).

Lintersection de deux plans dans I'espace correspond au systéeme suivant a 2 équations et a 3 inconnues :

{ ax+by+cz = d

ax+by+cs
Trois cas se présentent alors :

=

« les plans sont paralleles (et distincts) et il n’y a alors aucune solution au systeme;
« les plans sont confondus et il y a une infinité de solutions au systéme;

« les plans se coupent en une droite et il y a une infinité de solutions.
Exemple 3.
2x+3y—4z =
1. Le systéme o
4x + 6y — 82

n’a pas de solution. En effet, en divisant par 2 la seconde équation,
) . .. 2x +3y —4z
on obtient le systéme équivalent :

2x +3y —4z -5

1 - Les deux lignes sont clairement incompa-
2
tibles : aucun (x, y, ) ne peut vérifier a la fois 2x + 3y —4z =7 et 2x + 3y — 4z = —3;. L'ensemble des
solutions est donc

S =0a.

7
14

2x +3y —4z
Pour le systéme Y , les deux équations définissent le méme plan! Le systeme est
4x + 6y — 82

donc équivalent a une seule équation : 2x + 3y —4z = 7. Si on réécrit cette équation sous la forme
z = %x + % y— 771’ alors on peut décrire 'ensemble des solutions sous la forme :

1 3
S = {(x,y,§x+

7
—)|x,yeRr).
Py }

7X+2y—2
3. Soitle systéme{ xmey—as

. Par substitution :
2x +3y +2z 1

— _7 1
7x+2y—2z=1 — Z2=5x+y—3
2x+3y+2z=1

2x+3y+2(%x+y—% =1
_7 1 _7 1 _ 17 1
z-§x+y—§ z-§x+y—§ Z=19X"1p
9x +5y =2 y=—§x+%

__9 2
y=—s5x+3

Pour décrire 'ensemble des solutions, on peut choisir x comme parametre :

9 2 17 1
x,—x+-,—x—— || x€Ry}.
5 5710 10

Géométriquement : nous avons trouvé une équation paramétrique de la droite définie par I'intersection
de deux plans.
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FIGURE 1.2 - Intersection de deux plans.

Du point de vue du nombre de solutions, nous constatons qu’il n’y a que deux possibilités, a savoir aucune
solution ou une infinité de solutions.

Si on considere trois plans dans I'espace, une autre possibilité apparait : il se peut que les trois plans
s'intersectent en un seul point.

La suite en L2...

3. Exercices

D

Exercice 1
La demande de montres SLOUK est de 10 unités si le prix est égal a 160 euros et elle est de 20
unités si le prix est 120 euros. Calculer la fonction de demande supposée linéaire.

Exercice 2

Quand le prix est de 100 euros la quantité d’appareils photos de marque PISTOL offerte sur le
marché est 50 unités. Quand le prix est 50% plus élevé le nombre d’unités offertes est de 100.
Calculer la fonction d’offre supposée linéaire.

Exercice 3
Sur un marché, la demande et I'offre pour un bien sont caractérisés par :

D(p):q=—2p+6

1
S(p):q=5p+1

ol p est le prix du bien et g sa quantité. Calculer la quantité d’équilibre et le prix d’équilibre.

Exercice 4

Supposons que la consommation agrégée dans une économie, notée C, soit une fonction linéaire
du revenu disponible (hors taxes), noté Y. Supposons qu'’il existe un niveau de consommation
incompressible, noté C,. Il s’agit du niveau de consommation observé méme si le revenu disponible
est nul. On supposera que lorsque le revenu augmente de x, la consommation en écart a son niveau
incompressible, ie C —C,, augmente de 0, 8x. Déterminer la forme de la fonction de consommation.

Exercice 5
Réorganiser les expressions en forme implicite pour les représenter sous forme explicite dans le
plan donné :
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.ax+by=Rdansleplan (0,x,y), aveca >0 et R> 0.
. ax+ by <Rdansleplan (0, x,y).

. x;'x5* = U dans le plan (0, x, x,), avec a; > 0, a, >0 et U > 0.

[a xga_l)/a +(1—a) xgj_l)/"]ﬁ = U dans le plan (0,x,,x,),avec0<a<1,0#0,0 #1et
U>0.

Entrainement

Exercice 6
Soit un ménage disposant d'un revenu R de 100. On suppose qu’il ne peut acheter que des bananes
et des carottes et que les prix de ces deux biens sont respectivement p; =1 et p., = % ('unité dans

les
1.

deux cas est le kilogramme).

Supposons que le ménage décide de consommer la totalité de son revenu en achetant ces deux
biens (on admet qu’il ne peut pas consommer une quantité négative de banane ou de carotte).
Déterminer 'ensemble des couples de quantités (qg,q.) cohérents avec cette hypothese.

. Comment cet ensemble est-il modifié si le ménage décide de ne pas consommer la totalité de

son revenu ?

Représenter graphiquement ces deux ensembles.

Exercice 7
Lensemble des (x, y,2) € R3 tels que

x+y+z=3
x—y+z=1
—Xx+2y+z=4
est :
A.(1,1,1) B.(0,1,—-1) C.(0,1,2).
Exercice 8

Lensemble des (x, y,z) € R3 tels que

xX+y+z=3
x—y+z=1
x+z=4
est :
A.(1,1,1) B.vide C.(x,—1,4—x).
Exercice 9

Soient les fonctions d’offre et de demande :

ou

D(p):q=a—p
S(p):q=b+2p
a et b sont des parametres réels positifs.
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1. Interpréter les parametres a et b.
2. Représenter graphiquement ces fonctions.

3. Déterminer sous quelle condition un prix d’équilibre p* existe. Déterminer ce prix.

Auteurs du chapitre
« D’apreés un cours de Eva Bayer-Fluckiger, Philippe Chabloz, Lara Thomas de ’Ecole Polytechnique
Fédérale de Lausanne,
et un cours de Sophie Chemla de 'université Pierre et Marie Curie, reprenant des parties d'un
cours de H. Ledret et d’'une équipe de l'université de Bordeaux animée par J. Queyrut,
» mixés et révisés par Arnaud Bodin, relu par Vianney Combet.
 allégé par E Karamé.



Logique et
raisonnements

Vidéo m partie 1. Logique

Vidéo W partie 2. Raisonnements

Quelques motivations

o Il est important d’avoir un langage rigoureux. La langue francaise est souvent ambigué. Prenons
I'exemple de la conjonction « ou » : au restaurant « fromage ou dessert » signifie 'un ou I'autre mais pas
les deux. Si dans un jeu de carte on cherche «les as ou les cceurs » alors il ne faut pas exclure I'as de ceeur.
Autre exemple : que répondre a la question «As-tu 10 euros en poche ? » si 'on dispose de 15 euros?

« Il y a des notions difficiles a expliquer avec des mots : par exemple la continuité d’une fonction est
souvent expliquée par « on trace le graphe sans lever le crayon ». Il est clair que c’est une définition peu
satisfaisante. Voici la définition mathématique de la continuité d'une fonction f : I — R en un point
Xg€1I:

Ve>0 36>0 Vxel (lx—xol <6 = |f(x)—f(x)|<e).
C’est le but de ce chapitre de rendre cette ligne plus claire! C’est la logique.

 Enfin les mathématiques tentent de distinguer le vrai du faux. Par exemple « Est-ce qu’une augmentation
de 20%, puis de 30% est plus intéressante qu’une augmentation de 50% ? ». Vous pouvez penser « oui »
ou « non », mais pour en étre sir il faut suivre une démarche logique qui mene a la conclusion. Cette
démarche doit étre convaincante pour vous mais aussi pour les autres. On parle de raisonnement.

Les mathématiques sont un langage pour s’exprimer rigoureusement, adapté aux phénomenes complexes,
qui rend les calculs exacts et vérifiables. Le raisonnement est le moyen de valider — ou d’infirmer — une
hypothese et de 'expliquer a autrui.

1. Logique et calcul propositionnel

1.1. Quelques définitions pour commencer

. : C’est un énoncé pouvant étre vrai ou faux. Par exemple, "tout nombre premier
est impair" et "tout carré de réel est un réel positif' sont deux propositions. Il est facile de démontrer que
la premiere est fausse et la deuxieéme est vraie. Le mot proposition est clair : on propose quelque chose,
mais cela reste a démontrer.

. : c’est un énoncé supposé vrai a priori et que I'on ne cherche pas a démontrer. Ainsi, par exemple,
Euclide a énoncé cing axiomes (« les cinq postulats d’Euclide »), qu’il a renoncé a démontrer et qui
devaient étre la base de la géométrie (euclidienne). Le cinquiéme de ces axiomes a pour énoncé : "par


http://www.youtube.com/watch?v=aWSe1fjJHEM
http://www.youtube.com/watch?v=B-I5yZd0Wbk
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un point extérieur a une droite, il passe une et une seule droite paralléle a cette droite". Ces énoncés ont
en commun d’étre « évidents » pour tout le monde. Méme chose en microéconomie, pour s’accorder sur
le comportement rationnel du consommateur.

: c’est une proposition vraie (et en tout cas démontrée comme telle). Par abus de langage, le mot
proposition désigne souvent, dans la pratique des cours de mathématiques, un théoréme intermédiaire
ou de moindre importance, et méme on a tendance a appeler proposition la plupart des théoremes pour
réserver le mot théoréme aux plus grands d’entre eux (théoréme de Pythagore, . . . ). C’est d’ailleurs
ce dernier point de vue que nous adopterons dans les chapitres ultérieurs (mais pas dans ce premier
chapitre ol le mot « proposition » aurait alors deux significations différentes).

: un corollaire a un théoreme est un théoreme qui est conséquence de ce théoréme. Par
exemple, dans le chapitre « continuité », le théoréme des valeurs intermédiaires dit que I'image d’un
intervalle de R par une fonction continue a valeurs réelles, est un intervalle de R. Un corollaire de ce
théoréme affirme alors que si une fonction définie et continue sur un intervalle de R a valeurs réelles,
prend au moins une valeur positive et au moins une valeur négative alors cette fonction s’annule au
moins une fois dans cet intervalle.

: ’est un théoréme préparatoire a I'établissement d’un théoréeme de plus grande importance.

: une conjecture est une proposition que I'on suppose vraie sans parvenir a la démontrer.

1.2. Premiers éléments du calcul propositionnel

Définition
Une ou est une phrase soit vraie, soit fausse, mais pas les deux en méme temps.
Exemples :

o «Il pleut. »

o «Je suis plus grand que toi. »

e «24+2=4»

e «2X3=7»

«Pour tout x € R, on a x2>0.»
«Pourtoutz€C,onalz|=1.»

On peut définir la table de vérité associée a une proposition P :

<

FIGURE 2.1 — Table de vérité de « P »

L’équivalence

On dira « P est équivalent a Q » ou « P équivaut a Q » ou « P si et seulement si Q » quand 2 propositions P et
Q prennent les mémes valeurs de vérité.

La table de vérité est :
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PlQ|P <<= q
V|V vV
V| F F
Y F
F|F \%

FIGURE 2.2 — Table de vérité de « P <= Q »

La négation « »

L’assertion « P » ou encore « P » est vraie si P est fausse, et fausse si P est vraie.

o <| '
< =| =l

FIGURE 2.3 — Table de vérité de «non P »

1.3. Les connecteurs logiques

Nous allons construire de nouvelles propositions (plus complexes) a partir de plusieurs propositions plus
simples.

L'opérateur logique « /\ »

L'assertion « P A\ Q » se lit en francgais « P et Q ».

Lassertion « P A\ Q » est vraie si P est vraie et Q est vraie. Sinon l’assertion « P A\ Q » est fausse.
On résume ceci en une

o< <| o
m < m <O
oo < | >

FIGURE 2.4 — Table de vérité de « P A Q »

Par exemple si P est I'assertion « Cette carte est un as » et Q I'assertion « Cette carte est cceur » alors 'assertion
« P A Q » est vraie si la carte est ’as de cceur et fausse pour toute autre carte.

Mini-exercices.
Montrer avec des tables de vérité les propriétés suivantes :

1. Idempotence : (P AP) < P.
2. Commutativité : (P AQ) & (Q A P).
3. Associativité : (PAQ)AR) < (P A(Q AR).

4. Non contradiction : La proposition P A P est fausse.
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Lopérateur logique « \/ »

L'assertion « P \/ Q » se lit en frangais « P ou Q ».

L’assertion « P \V Q » est vraie si I'une (au moins) des deux assertions P ou Q est vraie. L'assertion « P \V Q »
est fausse si les deux assertions P et Q sont fausses.
On reprend ceci dans la table de vérité :

oo < <o
o< <O
<< <<

FIGURE 2.5 — Table de vérité de « P V Q »

Si P est I'assertion « Cette carte est un as » et Q l'assertion « Cette carte est ceeur » alors I'assertion « P \V Q »
est vraie si la carte est un as ou bien un cceur (en particulier elle est vraie pour I'as de cceur).

Mini-exercices.
Montrer avec des tables de vérité les propriétés suivantes :

1. Idempotence : (PV P) < P.
2. Commutativité : (PV Q) < (QV P).
3. Associativité : (PVQ)VR) < (PV(QVR).

4. La proposition P V P est vraie.

Quelques propriétés supplémentaires (a démontrer)

La distributivité : soient trois propositions P, Q et R,on a :
1. (PAQ)VRS (PVR)A(QVR)
2. (PVQ)AR= (PAR)V(QAR)

Les lois de Morgan : soient P et Q deux propositions, on a :

1.4. Limplication

La définition mathématique est la suivante :

Lassertion « P = Q » se lit en francais « P implique Q ».

Elle est équivalente a I’assertion « PVQ».

Sa table de vérité est donc la suivante :



LOGIQUE ET RAISONNEMENTS 1. LOGIQUE ET CALCUL PROPOSITIONNEL 13

PlQ|P=qQ
V|V vV
V| F F
FlV \%
F|F \%

FIGURE 2.6 — Table de vérité de «P = Q »

Elle se lit souvent aussi « si P est vraie alors Q est vraie » ou « si P alors Q ».

On dit « P implique Q », est fausse si P est vraie et Q est fausse, la proposition P = Q est vraie sinon.
Si l'implication est vraie, Q vraie peut étre déduite de P vraie.

Si 'implication est vraie, on ne peut rien inférer sur la vérité de Q lorsque P est fausse.

Par exemple :
e «0< x <25 = /x < 5»est vraie (prendre la racine carrée).
o «x €]—00,—4[ => x?+3x—4> 0» est vraie (étudier le bindéme).
e «sin(0) =0 = O =0 » est fausse (regarder pour 6 = 27 par exemple).
¢« «242=5 = 4/2=25»estvraie! Eh oui, si P est fausse alors 'assertion « P => Q » est toujours
vraie.

Mini-exercices.
Soient P, Q et R trois propositions. On a :

(P=QA@Q=>R)=(P=R)

Si P est vraie et si P = Q est vraie, alors Q est vraie (Cf. la premiere ligne de la table de vérité ??). Si
Q = R est vraie, alors puisque Q est vraie on en déduit que R est vraie.

Cette propriété de transitivité sera souvent exploitée.

L’équivalence et 'implication

U est définie a partir de l'implication comme :

«P = Q» &< «(P = Q) N (Q = P) ».

On dira « P est équivalent a Q » ou « P équivaut a Q » ou « P si et seulement si Q ». Cette assertion est vraie
lorsque P et Q sont vraies ou lorsque P et Q sont fausses.
La table de vérité est :

P|lQ|P=Q||P=>Q| Q=P | (P=>QA(Q=>P)
V|V \Y% \Y% \Y% \Y%
VI|F F F \Y% F
F |V F \% F F
F | F \Y% \Y% \Y% \Y%

Puisque les colonnes 3 et 6 ont les mémes valeurs de vérité sur chaque ligne les propositions P < Q et
(P = Q) A(Q = P) sont équivalentes, comme annoncée dans le théoréme.

Exemples :
o Pour x,x’ € R, I'équivalence « x - x’ =0 <= (x = 0 ou x’ = 0) » est vraie.
 Voici une équivalence toujours fausse (quelle que soit ’assertion P) : « P <= non(P) ».
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On s’intéresse davantage aux assertions vraies qu’aux fausses, aussi dans la pratique et en dehors de ce
chapitre on écrira « P &< Q» ou « P =—> Q » uniquement lorsque ce sont des assertions vraies. Par
exemple si 'on écrit « P &= Q » cela sous-entend « P <= Q est vraie ». Attention rien ne dit que P et Q
soient vraies. Cela signifie que P et Q sont vraies en méme temps ou fausses en méme temps.

Les lois de Morgan

Soient P et Q deux propositions. On a :

(P=Q) < (PVQ)
ainsi que :

P=Q < PAQ

Remarque : Par la loi de Morgan, on a aussi :

(P=Q) < PAQ
Ce résultat est trés important, on peut exprimer I'implication a ’aide d’un connecteur logique et d’'une (ou
deux) négation(s).

Mini-exercices.
Soient P et Q deux propositions. On a :

(P=Q) <= (PVQA(PVQ)

1.5. Les quantificateurs

On se donne une ensemble E et une proposition P(x) dont les valeurs de vérité dépendent des éléments
x de E (on anticipe un peu sur le chapitre suivant). Par exemple « x2 > 1 », 'assertion P(x) est vraie ou
fausse selon la valeur de x.

Le quantificateur 7/ ou « pour tout »

L'assertion
Vx€E | P(x)

est une assertion vraie lorsque les assertions P(x) sont vraies pour tous les éléments x de 'ensemble E.
On lit « Pour tout x appartenant a E, P(x) », sous-entendu « Pour tout x appartenant a E, P(x) est vraie ».
Par exemple :

o «Vx€[1l,+00[ (x?>1)» estune assertion vraie.

e «Yx€R (x?>1)»estune assertion fausse.

e «¥YneN n(n+ 1) est divisible par 2 » est vraie.

Le quantificateur 7 ou «il existe »

L'assertion
dx€E | P(x)
est une assertion vraie lorsque I'on peut trouver au moins un x de E pour lequel P(x) est vraie. On lit « il
existe x appartenant a E tel que P(x) (soit vraie) ».
Par exemple :

e «dx €R (x(x—1)<0)»estvraie (par exemple x = % vérifie bien la propriété).
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e «Ine€N n?—n>n»estvraie (il y a plein de choix, par exemple n = 3 convient, mais aussi n = 10 ou
méme n = 100, un seul suffit pour dire que I'assertion est vraie).
e «Ix €R (x?=—1)» est fausse (aucun réel au carré ne donnera un nombre négatif).

La négation des quantificateurs

Lanégationde « Yx € E P(x)» est «Ix €E non P(x)».

Par exemple la négation de « Vx € [1,+00[ (x? > 1) » est 'assertion « Ix € [1,+00[ (x? < 1)». En
effet 1a négation de x? > 1 est non(x? > 1) mais s’écrit plus simplement x? < 1.

Lanégationde «Ix € E P(x)» est «Yx €E non P(x)».

Voici des exemples :
« Lanégationde «Iz€C (22+2+1=0)»est«Vz€C (22+2+1#0)».
e Lanégationde «Yx€R (x+1€Z)»est«Ix€R (x+1¢Z)».
» Ce n’est pas plus difficile d’écrire la négation de phrases complexes. Pour I’assertion :

VxeR Jy>0 (x+y>10)

sa négation est
dIxeR Vy>0 (x+y<10).

Remarques

L'ordre des quantificateurs est trés important. Par exemple les deux phrases logiques
VxeR dyeR (x+y>0) et dyeR VxeR (x+y>0).

sont différentes. La premiére est vraie, la seconde est fausse. En effet une phrase logique se lit de gauche a
droite, ainsi la premiere phrase affirme « Pour tout réel x, il existe un réel y (qui peut donc dépendre de x)
tel que x +y > 0. » (par exemple on peut prendre y = |x|+ 1). C’est donc une phrase vraie. Par contre la
deuxiéme se lit : « Il existe un réel y, tel que pour tout réel x, x + y > 0. » Cette phrase est fausse, cela ne
peut pas étre le méme y qui convient pour tous les x !

On retrouve la méme différence dans les phrases en francgais suivantes. Voici une phrase vraie « Pour toute
personne, il existe un numéro de téléphone », bien slir le numéro dépend de la personne. Par contre cette
phrase est fausse : « Il existe un numéro, pour toutes les personnes ». Ce serait le méme numéro pour tout le
monde !

Terminons avec d’autres remarques.

e Quand on écrit «dx € R (f(x) = 0) » cela signifie juste qu'’il existe un réel pour lequel f s’annule. Rien
ne dit que ce x est unique. Dans un premier temps vous pouvez lire la phrase ainsi : « il existe au moins
un réel x tel que f(x) = 0». Afin de préciser que f s’annule en une unique valeur, on rajoute un point
d’exclamation :

dxeR (f(x)=0).

 Pour la négation d’une phrase logique, il n’est pas nécessaire de savoir si la phrase est fausse ou vraie.
Le procédé est algorithmique : on change le « pour tout » en « il existe » et inversement, puis on prend la
négation de I’assertion P.

 Pour la négation d’'une proposition, il faut étre précis : la négation de I'inégalité stricte « < » est 'inégalité
large « > », et inversement.
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 Les quantificateurs ne sont pas des abréviations. Soit vous écrivez une phrase en francais : « Pour tout
réel x, si f(x) =1 alors x > 0. » , soit vous écrivez la phrase logique :

VxeR (f(x)=1 = x>0).

Mais surtout n’écrivez pas « Vx réel, si f(x) =1 = x positif ou nul ». Enfin, pour passer d’une ligne a
I'autre d’un raisonnement, préférez plutdt « donc» a « = ».
o Il est défendu d’écrire 4,= . Ces symboles n’existent pas!

Mini-exercices.

1. Ecrire la table de vérité du « ou exclusif ». (C’est le ou dans la phrase « fromage ou dessert », 'un ou
l'autre mais pas les deux.)

Ecrire la table de vérité de « non (P et Q) ». Que remarquez vous ?
Ecrire la négation de « P = Q ».

Ecrire la négation de « (P et (Q ou R)) ».

AR R

Ecrire a I'aide des quantificateurs la phrase suivante : « Pour tout nombre réel, son carré est positif ».
Puis écrire la négation.

6. Mémes questions avec les phrases : « Pour chaque réel, je peux trouver un entier relatif tel que leur
produit soit strictement plus grand que 1 ». Puis « Pour tout entier n, il existe un unique réel x tel que
exp(x) égale n ».

2. Raisonnements

Voici des méthodes classiques de raisonnements.

2.1. Raisonnement direct ou déductif

On veut montrer que 'assertion « P => Q » est vraie. On suppose que P est vraie et on montre qu’alors Q
est vraie. C’est la méthode a laquelle vous étes le plus habitué. Elle provient de la premiére ligne de la
table de vérité de 'implication.

Exemple 1.
Montrer que sia,b € Q alorsa+ b € Q.

Démonstration. Prenons a € Q, b € Q. Rappelons que les rationnels @Q sont 'ensemble des réels s’écrivant

gavecpEZetqu*.

/
Alors a = ¢ pour un certain p € Z et un certain ¢ € N*. De méme b = % avec p’ € Z et ¢’ € N*. Maintenant

/ /+ /
p P _pataep’

a+b= - -

qa 4 qq
Or le numérateur pq’ + qp’ est bien un élément de Z ; le dénominateur qq” est lui un élément de N*. Donc
a + b s'écrit bien de la forme a + b = £; avec p” € Z, ¢ € N*. Ainsi a + b € Q. O

q



LOGIQUE ET RAISONNEMENTS 2. RAISONNEMENTS 17

2.2. Au cas par cas

Si 'on souhaite vérifier une assertion P(x) pour tous les x dans un ensemble E, on montre I'assertion pour
les x dans une partie A de E, puis pour les x n’appartenant pas a A. C’est la méthode de ou du

Exemple 2.
Montrer que pour tout x €R, |x — 1| < x2—x + 1.

Démonstration. Soit x € R. Nous distinguons deux cas.
Premier cas : x > 1. Alors |x — 1| = x — 1. Calculons alors x2 —x +1—|x —1|.

2—x+1—|x—1=x>—x+1—(x—1)
=x2—2x+2
=(x—12+1>0.

Ainsi x> —x+1—|x—1|>0etdoncx®?—x+1>|x—1|.

Deuxiéme cas : x < 1.Alors |[x—1| = —(x—1). Nous obtenons x?—x+1—|x—1| = x?>—x+1+(x—1) = x? > 0.
Etdonc x?—x+1>|x—1|.
Conclusion. Dans tous les cas |x —1| < x2 —x + 1. O

2.3. Par contre-exemple

Si 'on veut montrer qu'une assertion du type « Yx € E  P(x) » est vraie alors pour chaque x de E il faut
montrer que P(x) est vraie.

A linverse, pour montrer que cette assertion est fausse, il suffit de trouver x € E tel que P(x) soit fausse
(rappel : la négation de « Yx € E P(x)»est«dx € E non P(x) »).

Trouver un tel x, c’est trouver un a lassertion « Vx € E P(x) ».

Exemple 3.
Montrer que I’assertion suivante est fausse « Tout entier positif est somme de trois carreés ».
(Les carrés sont les 02, 12, 22, 32 ... Par exemple 6 = 22 + 12 +12))

Démonstration. Un contre-exemple est 7 : les carrés inférieurs a 7 sont 0, 1, 4 mais avec trois de ces nombres
on ne peut faire 7. O

2.4. Par contraposée

Le raisonnement par est basé sur 'équivalence suivante :

«P = Q» D et <<6 —> ﬁ»_

Donc si 'on souhaite montrer I'assertion « P => Q », on peut aussi montrer que si non(Q) est vraie alors
non(P) est vraie.

Exemple 4.
Soit n € N. Montrer que si n? est pair alors n est pair.
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Démonstration. Nous supposons que n n’est pas pair. Nous voulons montrer qu’alors n? n’est pas pair. Comme
n n’est pas pai, il est impair et donc il existe k € N tel que n = 2k+1. Alors n? = (2k+1)? = 4k?*+4k+1 = 2(+1
avec £ = 2k? + 2k € N. Et donc n? est impair.

Conclusion : nous avons montré que si n est impair alors n? est impair. Par contraposition ceci est équivalent
A : si n? est pair alors n est pair. O

2.5. Par I’'absurde

Le pour montrer « P => Q » repose sur le principe suivant : on suppose a la
fois que P est vraie et que Q est fausse et on cherche une contradiction.

On s’appuie sur la troisiéme ligne du tableau de vérité de I'implication.

Ainsi si P est vraie et « P => Q » est vraie, alors Q doit étre vraie.

Exemple 5.

a b
Soient a, b > 0. Montrer que si = alors a = b.
1+b 1+4a

‘ . . ) a _ b a __ _b
Démonstration. Nous raisonnons par 'absurde en supposant que 177 = 135 et a # b. Comme 13 = 175

alors a(14+a) = b(1+b) donc a+a? = b+ b? d’'ot1 a®>—b? = b—a. Cela conduit a (a—b)(a+b) = —(a—b).

Comme a # b alors a — b # 0 et donc en divisant par a — b on obtient a + b = —1. La somme des deux
nombres positifs a et b ne peut étre négative. Nous obtenons une contradiction.
. . a
Conclusion : si = alors a = b. O
1+b 1+4a

Dans la pratique, on peut choisir indifféremment entre un raisonnement par contraposition ou par I'absurde.
Attention cependant de bien préciser quel type de raisonnement vous choisissez et surtout de ne pas changer
en cours de rédaction !

2.6. Par récurrence

Le permet de montrer qu'une assertion P(n), dépendant de n, est vraie pour tout
n € N. La démonstration par récurrence se déroule en trois étapes : lors de l'initialisation on prouve P(0).
Pour I'étape d’hérédité, on suppose n > 0 donné avec P(n) vraie, et on démontre alors que I'assertion
P(n+ 1) au rang suivant est vraie. Enfin dans la conclusion, on rappelle que par le principe de récurrence
P(n) est vraie pour tout n € N.

Cette méthode est fondée sur la premiére ligne du tableau de vérité de Uimplication.

Exemple 6.
Montrer que pour tout n € N, 2" > n.

Démonstration. Pour n > 0, notons P(n) lassertion suivante :

2" > n.
Nous allons démontrer par récurrence que P(n) est vraie pour tout n > 0.
Initialisation. Pour n = 0 nous avons 2° = 1 > 0. Donc P(0) est vraie.

Hérédité. Fixons n > 0. Supposons que P(n) soit vraie. Nous allons montrer que P(n+1) : 2" > n+1 est
vraie.

2l — o x M =2"4 2" > 2" 4 par P(n) vraie
>n+1 car 2" > 1.
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Donc P(n + 1) est vraie.
Conclusion : par le principe de récurrence, P(n) : 2" > n est vraie pour tout n > 0. O

Remarques :

» Larédaction d'une récurrence est assez rigide. Respectez scrupuleusement la rédaction proposée : donnez
un nom a l'assertion que vous souhaitez montrer (ici P(n)), respectez les trois étapes (méme si souvent
I'étape d’initialisation est tres facile). En particulier méditez et conservez la premiére ligne de 'hérédité
« Fixons n > 0. Supposons que P(n) soit vraie. Nous allons montrer que P(n + 1) est vraie. »

« Sion doit démontrer qu'une propriété est vraie pour tout n > ng, alors on commence I'initialisation au
rang ny.

 Le principe de récurrence est basé sur la construction de 'ensemble N. En effet un des axiomes pour
définir N est le suivant : « Soit A une partie de N qui contient O et telle que si n € Aalors n+ 1 € A. Alors
A=Nn».

Mini-exercices.

1. (Raisonnement direct) Soient a, b € R,. Montrer que si a < b alors a < a;—b <beta<+vab<hb.

2. (Cas par cas) Montrer que pour tout n € N, n(n + 1) est divisible par 2 (distinguer les n pairs des n
impairs).

3. (Contraposée ou absurde) Soient a, b € Z. Montrer que si b # 0 alors a + bv2¢ Q. (On utilisera que
vV2¢Q)
(Absurde) Soit n € N*, Montrer que v n? + 1 n’est pas un entier.

(Contre-exemple) Est-ce que pour tout x e Ronax <2 = x2 < 4?

n(n+1)
5 -

(Récurrence) Fixons un réel x > 0. Montrer que pour tout entiern > 1, (1+x)" > 1 + nx.

(Récurrence) Montrer que pour toutn>1,1+2+---+n=

N o vk

3. Exercices

D

Exercice 10 Soit une proposition P. Montrer, a 'aide d’'un tableau de vérité, que P AP < P et
PVP s P.

Exercice 11
Soient P, Q et R trois propositions. Montrer, a 'aide d’un tableau de vérité, que :

1. PAQ&S QAP

2. PVQeSQVP

3. (PAQ)AR<=PA(QAR)

4. (PVQ)VR<PV(QVR)

5. (PAQ)VR< (PVR)A(QVR)
6. (PVQ)AR< (PAR)V(QAR)
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Exercice 12
Soient P, Q et R trois propositions. Montrer la transitivité de I'implication logique, c’est-a-dire que :

(P=>=QAQR=>R)=(P=R)

Exercice 13
Soient P et Q deux propositions. Exprimer I'équivalence logique en termes d’implication logique,
en établissant que :

Pe=Q)e (P=QAQ=>P)

Exercice 14
Montrer que I'implication logique suivante :

(10™ + 1 est divisible par 9) = (10"*! + 1 est divisible par 9)

est vraie, avec n € N. Que pensez vous de ces propositions ?

Exercice 15
Montrer les propositions suivantes par récurrence :

n . __ n(n+l)
LY = e,

n .o _ n(n+1)(2n+1)
2. 3 i = ey

n i—1 _ 1=x" 4 ees
3. 2121 X —-» avec x un réel différent de 1.

Entrainement

Exercice 16

Soient P, Q et R trois propositions, et P la proposition contraire de P. Montrer, a 'aide d'un tableau
de vérité, que :

1. PAQe=PVQ

2. PVQ&SPAQ

3. P=Q) = (PVQ).

4. P=>Q) = (PAQ).

5. (P=Q) < (Q=P).

Exercice 17

Montrer par récurrence :
n 1 4 1

1. Zi:z G—Di 1=

Z” _1 __n
. k=1 k(k+1) — n+1

2
3. D, (2k—1)=n?
4. D K= n2(n11)2

5

) Zfl l(l + 1) — n(n+1)(n+2)

i=1 3
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Ensembles
et applications

Motivations

Heureusement, vous connaissez déja quelques ensembles :

I’ensemble des entiers naturels N ={0,1,2,3,...}.
I'ensemble des entiers relatifs Z =1{...,—2,—1,0,1,2,...}.
I'ensemble des rationnels Q = {g |p€Z,qeN\ {O}}.
'ensemble des réels R, par exemple 1,+/2, 7, In(2),...
I'ensemble des nombres complexes C.

Nous allons essayer de voir les propriétés des ensembles, sans s’attacher a un exemple particulier. Vous

vous apercevrez assez rapidement que ce qui est au moins aussi important que les ensembles, ce sont les

relations entre ensembles : ce sera la notion d’application (ou fonction) entre deux ensembles.

1.

Ensembles

1.1. Définir des ensembles

On va définir informellement ce qu’est un ensemble : un est une collection d’éléments.
Exemples :

{0,1}, {rouge,noir}, {0,1,2,3,...} =N.
Un ensemble particulier est I’ , noté & qui est 'ensemble ne contenant aucun élément.

On note

si x est un élément de E, et x ¢ E dans le cas contraire.
Voici une autre facon de définir des ensembles : une collection d’éléments qui vérifient une propriété.
Exemples :

{xeR|lx—2/<1}, {zecC|z®=1}, {xeR|0<x<1}=[0,1].

1.2. Inclusion, union, intersection, complémentaire

L . E C F si tout élément de E est aussi un élément de F. Autrement dit : Yx € E (x € F). On
dit alors que E est un de F ou une de F.
L .E=FsietseulementsiECF etF CE.

de E. On note #(E) I'ensemble des parties de E. Par exemple si E = {1,2,3} :
2({1,2,3D) = {@,{1},{2}, {3},{1,2},{1,3},{2,3},{1,2,3}}.
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. .SiACE,

CeA={x€E|x¢A}

On le note aussi E \ A et juste (A s’il n’y a pas d’ambiguité (et parfois aussi A° ou A).

. .Pour A,BCE,

AUB={x€E|x€AouxeB}

Le « ou » n’est pas exclusif : x peut appartenir a A et a B en méme temps.

AnNB={x€E|x€Aetx€B}

1.3. Régles de calculs

Soient A, B, C des parties d'un ensemble E.

e ANB=BNA

« AN(BNC)=(ANB)NC (on peut donc écrire AN B N C sans ambigiiité)
e AN =0, ANA=A, ACB<=ANB=A

e« AUB=BUA

e« AUBUC)=(AUB)UC (on peut donc écrire AU B U C sans ambiguité)
e AU =A AUA=A ACB<=AUB=B

e AN(BUC)=(ANB)U(ANC)

e AUBNC)=(AUB)N(AUC)

« 0(CA)=A etdonc AcB<=I[(BclA

e« ((AnB)=C(AUCB

e« ((AuB)=CANCB

Voici les dessins pour les deux dernieres assertions.

CA CB

1. ENSEMBLES

22
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C(AnB)=CAUCB C(AuB)=CANCB

Les preuves sont pour I'essentiel une reformulation des opérateurs logiques, en voici quelques-unes :

e Preuve de AN(BUC)=(ANB)U(ANC): x €AN(BUC) < x€Aetx€(BUC) < x€Aet(xe
Boux€C(C) < (x€Aetxe€B)ou(x€ldetxe(C) < (x€ANB)ou(x €ANC) < x €
(ANB)UANC).

« Preuve de ((ANB) =CAUCB : x e ((ANB) < x ¢ (ANB) < non(x €ANB) < non(x €
Aet x €B) < non(x €A) ounon(x € B) <> x¢Aoux ¢B < x €lAUCB.

Remarquez que I'on repasse aux éléments pour les preuves.

1.4. Produit cartésien
Soient E et F deux ensembles. Le , noté E x F, est 'ensemble des couples (x,y) ou x € E
ety €F.
Exemple 1.
1. Vous connaissez RZ=R xR = {(x,y) | x,y € R}.
2. Autre exemple [0,1] xR = {(x,_y) lo<x<1,ye R}

y

3. [0,1]%[0,1]x[0,1] = {(x,y,z) |0< x,y,2 < 1}
Y

le

0 1 x

Mini-exercices.

1. En utilisant les définitions, montrer : A # B si et seulement s’il existe a €A\ B ou b € B\ A.

2. Enumérer #({1,2,3,4}).

3. Montrer AU(BNC)=(AUB)N(AuC)etC(AuB)=C(0ANCB.

4. Enumérer {1,2,3} x {1,2,3,4}.

5. Représenter les sous-ensembles de R? suivants : (]0, 1[U[2,3[) x [—1,1], (R \ (]o, 1[U[2,3[)) X ((R\
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[—1,1])Nn[0,2]).

1.5. Cardinal

Définition 1.
Un ensemble E est s'il existe un entier n € N et une bijection de E vers {1,2,...,n}. Cet entier n est
unique et s’appelle le de E (oule ) et est noté Card E.

Quelques exemples :

1. E = {rouge, noir} est en bijection avec {1,2} et donc est de cardinal 2.

2. N n’est pas un ensemble fini.

3. Par définition le cardinal de 'ensemble vide est 0.

Enfin quelques propriétés :

1. Si A est un ensemble fini et B C A alors B est aussi un ensemble fini et Card B < Card A.

2. SiA, B sont des ensembles finis disjoints (c’est-a-dire AN B = @) alors Card(AU B) = CardA + Card B.

3. Si A est un ensemble fini et B C A alors Card(A \ B) = CardA — Card B. En particulier si B C A et
CardA = Card B alors A= B.

4. Pour A, B deux ensembles finis quelconques :

Card(AUB) = CardA + Card B— Card(AN B)

Voici une situation ot s’applique la derniere propriété :

La preuve de la derniére propriété utilise la décomposition
AUB=AU(B\(ANB))
Les ensembles A et B \ (AN B) sont disjoints, donc
Card(AUB) = CardA + Card (B \ (AN B)) = Card A+ Card B — Card(AN B)

par la propriété 2, puis la propriété 3.

Cette formule se généralise. Ainsi pour 3 ensembles A,B et C :

Card(AUBUC) = CardA+ Card B + Card C — Card(ANB) —Card(ANC)—Card(BN C)+ Card(ANBNC)

5. Enfin, pour le produit cartésien de deux ensembles finis A et B :

Card(A x B) = CardA x Card B

La formule se généralise également.

Savoir compter les éléments d’un ensemble sera treés utile pour faire du dénombrement puis calculer
des probabilités.
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2. Applications

2.1. Définitions

e Une (ou ou ) f : E = F, C’est la donnée pour chaque élément
x € E d’un unique élément de F noté f(x).
Nous représenterons les applications par deux types d’illustrations : les ensembles « patates » ou dia-
gramme de Venn, 'ensemble de départ (et celui d’arrivée) est schématisé par un ovale ses éléments par
des points. ’association x — f(x) est représentée par une fleche.

f

f(x)

L'autre représentation est celle des fonctions continues de R dans R (ou des sous-ensembles de R).
L'ensemble de départ R est représenté par I'axe des abscisses et celui d’arrivée par 'axe des ordonnées.
L’association x — f(x) est représentée par le point (x, f (x)).

y
h
f(x)
X
X
Exemple 2.
Par exemple, ici est-on en présence d’une fonction ?
E F
\ 2
> Y2
[N
Ya
Ceci n’est pas une fonction, car x; a deux images (y; et y,)
. . Deux applications f, g : E — F sont égales si et seulement si pour tout x € E, f(x) = g(x). On
note alors f = g.
o Le de f :E—F est

Ff={(x,f(x))€ExF|x€E}

Yy

/‘K/

X

. .Soient f : E > Fetg:F — G alors gof : E — G est 'application définie par
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gof(x)=g(f(x).

gof
. . Soient f : E — F et AC E alors la restriction de f a A est 'application

f|A:A—> F
x — f(x)

Exemple 3.
1. I ,idg : E — E est simplement définie par x — x et sera tres utile dans la suite.

2. Définissons f, g ainsi
f : ]0,+OO[ — ]0,+OO[
1
X

X —>

g ]0,+OO[ -

Alors g o f : ]0,4+00[— R vérifie pour tout x €]0,+00] :
1
1 1 1—x
o) xX)= X = —_ = = = — X).
sef(=siw) =g ()= 17 = 1r =5
2.2. Image directe, image réciproque
Soient E, F deux ensembles.
Définition 2.
SoitACEetf:E—F,T de A par f est 'ensemble

FA={f0) | x €A}

Définition 3.
SoitBCFetf:E—F,I de B par f est 'ensemble

fi(B)={x€E|f(x)eB}

26
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Remarque.
Ces notions sont plus difficiles a maitriser qu’il n’y parait!

« f(A) est un sous-ensemble de F, f ~1(B) est un sous-ensemble de E.

« La notation « f~}(B) » est un tout, rien ne dit que f est une fonction bijective (voir plus loin). L'image
réciproque existe quelque soit la fonction.

« L'image directe d’'un singleton f({x}) = { f (x)} est un singleton. Par contre I'image réciproque d’'un
singleton f _1({ y}) dépend de f. Cela peut étre un singleton, un ensemble a plusieurs éléments ; mais
cela peut-étre E tout entier (si f est une fonction constante) ou méme I'ensemble vide (si aucune image
par f ne vaut y).

2.3. Antécédents

Fixons y € F. Tout élément x € E tel que f(x) =y est un de y.
En termes d’image réciproque I'ensemble des antécédents de y est f ~1({y}).

Sur les dessins suivants, '’élément y admet 3 antécédents par f. Ce sont xy, X5, X3.

f

Mini-exercices.

1. Pour deux applications f,g : E — F, quelle est la négationde f = g?

2. Représenter le graphe de f : N — R définie par n — %.

3. Soient f, g,h : R — R définies par f(x) = x2, g(x) = 2x + 1, h(x) = x3 — 1. Calculer f o(goh) et
(f og)oh.
4. Pour la fonction f : R — R définie par x — x? représenter et calculer les ensembles suivants : f ([0, 1[),

f@R), FA—1,20), F7H([L, 2D, FH([-1,1D, F71{3D, FHR\N).
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3. Injection, surjection, bijection

3.1. Injection, surjection

Soit E, F deux ensembles et f : E — F une application.

Définition 4.
f est si pour tout x,x’ € E avec f(x) = f(x’) alors x = x’. Autrement dit :

Vx,x' €E (f(x)=f(x’) = x=x’)

E F

Ceci est une injection, f(y;) = f (¥;) = x; = x;.

Définition 5.
f est si pour tout y € F, il existe x € E tel que y = f(x). Autrement dit :

VyeF 3dxeE (y:f(x))

Ceci est une surjection, tout élément de F a un antécédant dans E

Une autre formulation : f est surjective si et seulement si f(E) =F.

Les applications f représentées sont injectives :

Les applications f représentées sont surjectives :
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Remarque.
Encore une fois ce sont des notions difficiles a appréhender. Une autre facon de formuler l'injectivité et la
surjectivité est d’utiliser les antécédents.
» f estinjective si et seulement si tout élément y de F a au plus un antécédent (et éventuellement aucun).
e f est surjective si et seulement si tout élément y de F a au moins un antécédent.

Remarque.
Voici deux fonctions non injectives :

Ainsi que deux fonctions non surjectives :

f y
<7 F
Yy ----=------- |
o |
L E ] x
Exemple 4.
1. Soit f; : N — Q définie par f;(x) = ﬁ Montrons que f; est injective : soit x,x’ € N tels que
fi(x) = fi(x"). Alors = = 2, donc 1+ x = 1+ x’ et donc x = x’. Ainsi f; est injective.

Par contre f; n’est pas surjective. Il s’agit de trouver un élément y qui n’a pas d’antécédent par f;. Ici il
est facile de voir que I'on a toujours f;(x) < 1 et donc par exemple y = 2 n’a pas d’antécédent. Ainsi f;
n’est pas surjective.

2. Soit f, : Z — N définie par f,(x) = x2. Alors f, n’est pas injective. En effet on peut trouver deux éléments
x,x" € 7 différents tels que f,(x) = f5(x’). Il suffit de prendre par exemple x = 2, x’ = —2.
fo ’est pas non plus surjective, en effet il existe des éléments y € N qui n’ont aucun antécédent. Par
exemple y = 3 : si y = 3 avait un antécédent x par f,, nous aurions f,(x) = y, c’est-a-dire x> = 3,
d’ot1 x = £4/3. Mais alors x n’est pas un entier de Z. Donc y = 3 n’a pas d’antécédent et f, n’est pas
surjective.
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3.2. Bijection

Définition 6.
f est si elle injective et surjective. Cela équivaut a : pour tout y € F il existe un unique x € E
tel que y = f(x). Autrement dit :

VyeF 3dlxe€E (yzf(x))

E F

Ceci est une bijection. Notons qu’il s’agit du seul cas ou on peut imaginer sans équivoque une fonction
qui nous ameéne de F vers E.

L'existence du x vient de la surjectivité et 'unicité de I'injectivité. Autrement dit, tout élément de F a un
unique antécédent par f.

f

F

Proposition 1.
Soit E, F des ensembles et f : E — F une application.

1. Lapplication f est bijective si et seulement si il existe une application g : F — E telle que f o g =idy et
gof =idg.
2. Si f est bijective alors Uapplication g est unique et elle aussi est bijective. Lapplication g s’appelle la
de f et est notée f 1. De plus (f_l)_1 =f.

Remarque.
e f o g =id se reformule ainsi
VyeF f(s(»)=y.
o Alors que g o f =idy s’écrit :
Vx e€E g(f(x)) =Xx.
o Par exemple f : R —]0,4+00[ définie par f(x) = exp(x) est bijective, sa bijection réciproque est
g :]0,+00[— R définie par g(y) = In(y). Nous avons bien exp (ln(y)) =y, pour tout y €]0,+0o0[ et
In ( exp(x)) = x, pour tout x € R.

Démonstration.

1. « Sens =. Supposons f bijective. Nous allons construire une application g : F — E. Comme f est
surjective alors pour chaque y € F, il existe un x € E tel que y = f(x) et on pose g(y) = x. On
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a f(g(y)) = f(x) = y, ceci pour tout y € F et donc f o g = idy. On compose a droite avec f
donc f o go f =idpof. Alors pour tout x € E on a f(g Of(x)) = f(x) or f est injective et donc
gof(x)=x.Ainsi gof =idg. Bilan: f o g =idp et go f =idp.

e Sens <. Supposons que g existe et montrons que f est bijective.

— f est surjective : en effet soit y € F alors on note x = g(y) € E; on a bien : f(x) :f(g(y)) =
fog(y)=idp(y) =y, donc f est bien surjective.
— f est injective : soient x,x’ € E tels que f(x) = f(x’). On compose par g (a4 gauche) alors
gof(x)=gof(x’)doncidg(x)=idg(x") donc x = x’; f est bien injective.
2.  Sif est bijective alors g est aussi bijective car g o f =idy et f o g = idy et on applique ce que 'on
vient de démontrer avec g a la place de f. Ainsi g~! = f.

» Sif est bijective, g est unique : en effet soit h : F — E une autre application telle que ho f =idy et
f oh=1idg; en particulier f oh =idy = f o g, donc pour tout y € F, f(h(y)) :f(g(y)) or f est
injective alors h(y) = g(y), ceci pour tout y € F ; dou h = g.

O
Proposition 2.

Soient f : E — F et g : F — G des applications bijectives. Lapplication g o f est bijective et sa bijection
réciproque est

(gof)y'=ftog™

Démonstration. D’apres la proposition 1, il existe u : F — E tel que uo f = idg et f ou =idp. Il existe aussi
v:G— Ftelquevog =idp et gov =1id;. Onaalors (gof)o(uov) = go(fou)ov = goidyov = gov =idg.
Et (uov)o(gof)=uo(vog)of =uoidpof =uof =idg. Donc g o f est bijective et son inverse est uov.
Comme u est la bijection réciproque de f et v celle de g alors : uov=f"tog™ O

Mini-exercices.

1. Les fonctions suivantes sont-elles injectives, surjectives, bijectives?
e f1:R—[0,+00[, x — x2.

o f5:[0,+00[— [0,+00[, x = x2.

o fB;N—>N,x'—>x2.

° f4:Z—>Z,X'—)X—7.
° fS:RH[O:-i_OO[’x._)le

2. Montrer que la fonction f :]1,+00[—]0,+00[ définie par f(x) = ﬁ est bijective. Calculer sa
bijection réciproque.

4. Bases du dénombrement (facultatif)

4.1. Injection, surjection, bijection et ensembles finis

Proposition 3.
Soit E, F deux ensembles finis et f : E — F une application.

1. Si f est injective alors Card E < Card F.
2. Si f est surjective alors Card E > Card F.
3. Si f est bijective alors Card E = Card F.

Démonstration.
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1. Supposons f injective. Notons F' = f(E) C F alors la restriction f; : E — F’ (définie par fi(x) = f(x))
est une bijection. Donc pour chaque y € F’ est associé un unique x € E tel que y = f(x). Donc E et F’
ont le méme nombre d’éléments. Donc Card F’ = CardE. Or F’ C F, ainsi Card E = Card F/ < Card F.

2. Supposons f surjective. Pour tout élément y € F, il existe au moins un élément x de E tel que y = f(x)
et donc CardE > Card F.

3. Cela découle de (1) et (2) (ou aussi de la preuve du (1)).

Proposition 4.
Soit E, F deux ensembles finis et f : E — F une application. Si

CardE = Card F
alors les assertions suivantes sont équivalentes :
i. f estinjective,
ii. f estsurjective,

iii. f est bijective.

Démonstration. Le schéma de la preuve est le suivant : nous allons montrer successivement les implications :
(1) = (ii)) = (iii)) = (1)
ce qui prouvera bien toutes les équivalences.

e (i) = (ii). Supposons f injective. Alors Card f (E) = Card E = Card F. Ainsi f (E) est un sous-ensemble
de F ayant le méme cardinal que F ; cela entraine f(E) = F et donc f est surjective.

« (ii) = (iii). Supposons f surjective. Pour montrer que f est bijective, il reste a montrer que f est
injective. Raisonnons par I'absurde et supposons f non injective. Alors Card f (E) < Card E (car au
moins 2 éléments ont la méme image). Or f(E) = F car f surjective, donc Card F < Card E. C’est une
contradiction, donc f doit étre injective et ainsi f est bijective.

o (iii) = (i). C’est clair : une fonction bijective est en particulier injective.

Appliquez ceci pour montrer le

Proposition 5.
Si Uon range dans k tiroirs, n > k paires de chaussettes alors il existe (au moins) un tiroir contenant (au
moins) deux paires de chaussettes.

Malgré sa formulation amusante, c’est une proposition souvent utile. Exemple : dans un amphi de 400

étudiants, il y a au moins deux étudiants nés le méme jour!

4.2. Nombres d’applications

Soient E, F des ensembles finis, non vides. On note CardE = n et Card F = p.

Proposition 6.
Le nombre d’applications différentes de E dans F est :

n

p

Autrement dit cest | (Card F)C2dE |
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Exemple 5.
En particulier le nombre d’applications de E dans lui-méme est n". Par exemple si E = {1,2,3,4,5} alors ce
nombre est 5° = 3125.

Démonstration. Fixons F et p = Card F. Nous allons effectuer une récurrence sur n = CardE. Soit (P,)
l'assertion suivante : le nombre d’applications d'un ensemble a n éléments vers un ensemble a p éléments
est p".

e Initialisation. Pour n = 1, une application de E dans F est définie par I'image de 'unique élément de E.
Ilyap=CardF choix possibles et donc p! applications distinctes. Ainsi P; est vraie.

» Hérédité. Fixons n > 1 et supposons que P, est vraie. Soit E un ensemble a n + 1 éléments. On choisit
et fixe a € E; soit alors E’ = E \ {a} qui a bien n éléments. Le nombre d’applications de E’ vers F est
p", par l’hypothése de récurrence (P,). Pour chaque application f : E’ — F on peut la prolonger en une
application f : E — F en choisissant 'image de a. On a p choix pour I'image de a et donc p" x p choix
pour les applications de E vers F. Ainsi P, est vérifiée.

 Conclusion. Par le principe de récurrence P, est vraie, pour tout n > 1.

O
Proposition 7.
Le nombre d’injections de E dans F est :
px(p—1x-x(p—(n—1)).
Démonstration. Supposons E = {a;,a,,...,a,}; pour I'image de a; nous avons p choix. Une fois ce choix

fait, pour I'image de a, il reste p — 1 choix (car a, ne doit pas avoir la méme image que a,). Pour I'image
de a; il y a p — 2 possibilités. Ainsi de suite : pour I'image de a; il y a p —(k — 1) choix... Il y a au final
px(p—1)x---x(p—(n—1)) applications injectives. O

Notation :n!l=1x2x3x---xn.Avec 1! =1 et par convention 0! = 1.

Proposition 8.
Le nombre de bijections d’un ensemble E de cardinal n dans lui-méme est :

Exemple 6.
Parmi les 3125 applications de {1,2, 3,4, 5} dans lui-méme il y en a 5! = 120 qui sont bijectives.

Démonstration. Nous allons le prouver par récurrence sur n. Soit (P,) 'assertion suivante : le nombre de
bijections d'un ensemble a n éléments dans un ensemble a n éléments est n!

o P; estvraie. Il n'y a qu'une bijection d’'un ensemble a 1 élément dans un ensemble a 1 élément.

« Fixons n > 1 et supposons que P, est vraie. Soit E un ensemble a n + 1 éléments. On fixe a € E.
Pour chaque b € E il y a —par 'hypothése de récurrence- exactement n! applications bijectives de
E\ {a} — E\ {b}. Chaque application se prolonge en une bijection de E — F en posant a — b. Comme
ilyan+1 choix de b € E alors nous obtenons n! x (n+ 1) bijections de E dans lui-méme. Ainsi P, ; est
vraie.

o Par le principe de récurrence le nombre de bijections d’'un ensemble a n éléments est n!

On aurait aussi pu directement utiliser la proposition 7 avec n = p (sachant qu’alors les injections sont aussi
des bijections). O
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4.3. Nombres de sous-ensembles

Soit E un ensemble fini de cardinal n.

Proposition 9.

2CardE

Ilya sous-ensembles de E :

CardZ(E)=2"

Exemple 7.

SiE=1{1,2,3,4,5} alors 2(E) a 2° = 32 parties. C’est un bon exercice de les énumérer :
e 'ensemble vide : &,
» 5singletons : {1},{2},...,
e 10 paires : {1,2},{1,3},...,{2,3},...,

10 triplets : {1,2,3},...,

» 5 ensembles a 4 éléments : {1,2,3,4},{1,2,3,5},...,

et E tout entier : {1,2,3,4,5}.

Démonstration. Encore une récurrence sur n = Card E.
e Sin=1, E = {a} est un singleton, les deux sous-ensembles sont : & et E.
» Supposons que la proposition soit vraie pour n > 1 fixé. Soit E un ensemble a n + 1 éléments. On fixe
a € E. Il y a deux sortes de sous-ensembles de E :
— les sous-ensembles A qui ne contiennent pas a : ce sont les sous-ensembles A C E\ {a}. Par ’hypotheése
de récurrence il y en a 2".
— les sous-ensembles A qui contiennent a : ils sont de la forme A = {a} UA" avec A’ C E \ {a}. Par
I'hypothése de récurrence il y a 2" sous-ensembles A’ possibles et donc aussi 2" sous-ensembles A.
Le bilan : 2" + 2" = 2™"! parties A C E.
e Par le principe de récurrence, nous avons prouvé que si Card E = n alors on a Card Z(E) = 2".

4.4. Coefficients du binome de Newton

Définition 7.
Le nombre de parties a k éléments d’'un ensemble a n éléments est noté (Z) ou C,’f.

Exemple 8.
Les parties a deux éléments de {1,2,3} sont {1,2}, {1,3} et {2,3} et donc Cg = 3. Nous avons déja classé
les parties de {1,2,3,4,5} par nombre d’éléments et donc
. Cg =1 (la seule partie n’ayant aucun élément est I’ensemble vide),
. C51 =5 (il y a 5 singletons),
Cé =10 (il y a 10 paires),
« C3=10,
« Ci=5,
. C55 =1 (la seule partie ayant 5 éléments est ’ensemble tout entier).

Sans calculs on peut déja remarquer les faits suivants :

Proposition 10.
0_ 1_ —
e« C,=1,C,=nC}=1
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N Cn k _ Ck
k _ k—1
« C,=nC;
0 1 k —
o Cn+Cn+-~-+Cn+-~+Cr':—2”

Démonstration.
. 1 _ . .
1. Par exemple : C, =n car il y a n singletons.

2. Compter le nombre de parties A C E ayant k éléments revient aussi a compter le nombre de parties de la
forme CA (qui ont donc n — k éléments), ainsi cy —k = Ck

3. La formule C,? + C; +- 4 Cr’f + -+ C} = 2" exprime que faire la somme du nombre de parties a k
éléments, pour k =0,...,n, revient a compter toutes les parties de E.

O

Proposition 11.

ck=ck +c!  (0<k<n)

Démonstration. Soit E un ensemble a n éléments, a € E et E' = E \ {a}. Il y a deux sortes de parties AC E
ayant k éléments :
« celles qui ne contiennent pas a : ce sont donc des parties a k éléments dans E’ qui a n—1 éléments. Il y
a en a donc Cr’f 15
o celles qui contiennent a : elles sont de la forme A= {a} UA’ avec A" une partie & k — 1 éléments dans E’
quian—1éléments. Il yen a Cff:ll.
T e - | k
Bilan: C; =C,—; +C,_;. O
Le triangle de Pascal est un algorithme pour calculer ces coefficients C ff La ligne du haut correspond a C?,
la ligne suivante a Cf et Cll, la ligne d’apres a c9, Cz1 et CZZ.
La derniére ligne du triangle de gauche aux coefficients C?, Ci, R Cj.

Comment continuer ce triangle pour obtenir le triangle de droite ? Chaque élément de la nouvelle ligne est
obtenu en ajoutant les deux nombres qui lui sont au-dessus a droite et au-dessus a gauche.

A Ay
ININ VAVAN
ANVAWAN VAYAYAS

1/&fxfg/\ /x/x/x/\
6 /\gx/x/x/\

Ce qui fait que cela fonctionne c’est bien s{ir la proposition 11 qui se représente ainsi :

k—1 k
Cn—l Cn—l

N/
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Une autre facon de calculer le coefficient du bindbme de Newton repose sur la formule suivante :

Proposition 12.

ok = n!
T kl(n—k)!

Démonstration. Cela se fait par récurrence sur n. C’est clair pour n = 1. Si c’est vrai au rang n — 1 alors

écrivons Cr’f = Cff:ll + Cr’f_l et utilisons ’hypothése de récurrence pour C!f:ll et Crlf—r Ainsi
_ —1)! (n—1)
ck=cklick = (n
nooTnel el (k- DI (n—1— (k=) k!(n—1—k)!
_ (n—1) x( 1 +l)_ (n—1) 8 n
S (k—D!(n—k—1) " \n—k k) (k—D(n—k—1)" k(n—k)
n!
~ ki(n—k)!

4.5. Formule du binome de Newton

Théoreme 1.
Soient a, b € R et n un entier positif alors :

(a+b)'= ZC:: a" k. pk
k=0

Autrement dit :
(a+b)'=Ca-b°+Cla™ b+ +Cha"F bR+ +CM a® B"
Le théoréme est aussi vrai si a et b sont des nombres complexes.
Exemple 9.
1. Pour n = 2 on retrouve la formule archi-connue : (a + b)? = a® + 2ab + b?.
2. 1l est aussi bon de connaitre (a + b)® = a® + 3a?b + 3ab? + b°.

3. Sia=1et b=1 on retrouve la formule : .} C,’f =2

Démonstration. Nous allons effectuer une récurrence sur n. Soit (P,,) 'assertion : (a+b)" = ZZ:O Cr]f a"k.pk,
« Initialisation : Pour n =1, (a + b)! = C%a'b® + C1ab'. Ainsi P, est vraie.
o Heérédité : Fixons n > 2 et supposons que P,_; est vraie.
(a+b)" = (a+b)-(a+b)!
= a(a" '+ +CF a4+ )
+b (@™ 4o ORI DR L )
= +(Ck +c)amFpr
— ---+CT’fa"_kbk+---

n
= STckark bt
k=0

Ainsi P, est vérifiée.
» Conclusion : par le principe de récurrence P, est vraie, pour tout n > 1.
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O

Mini-exercices.

1. Combien y a-t-il d’applications injectives d’'un ensemble a n éléments dans un ensemble a n + 1
éléments ?

2. Combien y a-t-il d’applications surjectives d'un ensemble a n + 1 éléments dans un ensemble a n
éléments ?

3. Calculer le nombre de fagons de choisir 5 cartes dans un jeux de 32 cartes.

4. Calculer le nombre de listes & k éléments dans un ensemble a n éléments (les listes sont ordonnées :
par exemple (1,2,3) # (1, 3,2)).

5. Développer (a — b)*, (a + b)°.

6. Que donne la formule du binéme pour a = —1, b = +17? En déduire que dans un ensemble a n
éléments il y a autant de parties de cardinal pair que de cardinal impair.

5. Exercices

D

Exercice 18
Soient les ensembles :

A= {x € N|x est un multiple de 2}
B = {x € N|x est un multiple de 3}
C = {x € N|x est un multiple de 6}

D = {x € N|x est un multiple de 8}
Déterminer les ensembles ANB,ANC,AUC,BUC, CND.

Exercice 19

Soient A et B deux sous ensembles de Q. Illustrer avec des diagrammes de Venn les deux regles de
Morgan :

ANB

AUB

Il
1|
Wl @I

U
N

Exercice 20
Soient les ensembles A= {a, b}, B ={1,3} et C = {4, 5}. Déterminer les ensembles suivants :

1. Ax(BUC)
2. (AXxB)UAXxC)
3. Ax(BNC)
4. (AxB)N(Ax C)
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Exercice 21
Soit E un ensemble tel que Card(E) = 30. Si A et B sont deux sous ensembles de E non disjoints
(ie AN B # 0) tels que Card(A) = 20, Card(B) = 15 et Card(AN B) = 6. Déterminer Card(AU B).

Exercice 22

Les résultats d’'une entreprise ont montré que sur 50 employés, 30 sont obeses, 25 souffrent d’hy-
pertension artérielle tandis que 20 ont un taux de cholestérol trop élevé. Parmi les 25 qui souffrent
d’hypertension, 12 ont un taux de cholestérol trop élevé ; 15 obeses souffrent d’hypertension et 10
obeses souffrent d’un taux de cholestérol trop élevé ; finalement, 5 employés souffrent de ces trois
maux a la fois. Déterminer le nombre d’employés bien portant.

Entrainement

Exercice 23
Soient quatre ensemble A, B, C et D. Déterminer :

1. Card(AUBUC)
2. Card(AUBUCUD)

Exercice 24
Une autoroute posséde 3 sorties principales, chacune d’elle possédant elle-méme deux sorties
secondaires. Quel est le nombre de facon de quitter 'autoroute ?

Exercice 25
Soient 5 propositions. Combien de lignes contient le tableau de vérité ?

Auteurs du chapitre
e Arnaud Bodin, Benjamin Boutin, Pascal Romon
« Stéphane Adjemian,
o Frédéric Karamé



Fonctions
usuelles

Dans ce chapitre, nous résumons les fonctions importantes qui apparaissent naturellement dans la résolution
de problémes simples en économie.

1. Représentation graphique des fonctions

Une fonction est un ensemble de paires ordonnées, construites a partir du produit cartésien de deux
ensembles, tel que chaque élément de 'ensemble de départ est associé a un et un seul élément de I'ensemble
d’arrivée.

Dans le chapitre précédent nous avons donné comme exemple de fonction :
B={(x,y)lxeNAy=2x—1}

Pour représenter les fonctions on utilise un plan cartésien.
Les éléments de 'ensemble de départ sont représentés sur une ligne horizontale ('axe des abscisses).
Les éléments de I'ensemble d’arrivée sont représentés sur une ligne verticale (I’axe des ordonnées).

Chaque paire représente les coordonnées d’un point dans le plan.

Y

FIGURE 4.1 — Exemple de représentation graphique d’une fonction dans un plan.
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2. Les droites

Définition 1.
La fonction la plus simple que nous puissions considérer est la . Celle-ci est caractérisée par
I'équation :
y=ax+b
ol a et b sont des parameétres réels, il s’agit d’'une fonction de R dans R.

— Le parameétre a est la pente de la droite.
— Le parameétre b est 'ordonnée a l'origine.
- Sif(x)=ax+Db, Vxp,x; € R xR tel que xy # x7 :
a= f (1) —f(x0)

X1 —Xo

b= f(0)

Y y=ax+b
f(x1)A
f(xo)
/
/

FIGURE 4.2 — Exemple de représentation graphique d’une droite dans un plan.

On peut faire beaucoup de choses avec des droites. Vous verrez plus tard que I'on utilise souvent des droites
pour approximer des fonctions plus générales (et complexes).

Ce que vous devez savoir faire :

1. Tracer une droite dans un plan.
2. Retrouver I'équation d’'une droite a partir d’un tracé.
3. Trouver l'intersection d’une droite et de 'axe des abscisses.

4. Calculer le point d’intersection de deux droites.



FONCTIONS USUELLES 2.LEs DROITES 41

2.1. Tracer une droite a partir de son équation

Il suffit de se donner deux points sur la droite, de représenter ces deux points dans le plan, puis de les relier
(avec une regle).

Soit la droite y = ax + b = f(x).
On sait qu’elle passe par (0, b) (car f(0) = b). b est 'ordonnée a l'origine.

On se donne un autre point, par exemple (1,a + b) appartient aussi a la droite (car f(1) = a + b).

Y4 y=ax+b

a+ b

R B

v

FIGURE 4.3 - Tracer une droite avec 2 points.

2.2. Déterminer I’équation d’une droite avec deux points

Supposons qu'une droite passe par les points (xg, yo) et (x1,y1)-

Déterminons I'équation de la droite qui passe par ces deux points, c’est-a-dire déterminons la pente a et
l'ordonnée a I'origine b de la droite qui passe par ces deux points.

Les parametres a et b sont tels que les 2 points (xg, yo) et (x1, y;) vérifient 'équation de la droite :
Yo =axg+b
y1 =ax;+b

Nous avons deux équations et deux inconnues, que 'on peut résoudre comme vu au chapitre 1.

Par substitution ou en soustrayant les équations pour faire disparaitre b et isoler a :
a= Yoo N1 (pente)
Xo — X7

En remplacant 'expression de a dans une des deux équations pour trouver b :

b=y1—y0_y1x1
Xo— X1
Yo—Y
=y0—Lx0

Xo— X1
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Notons que tout cela ne fonctionne que si x, # x; (voir I'expression de la pente)... Les deux points doivent
étre différents! Autrement il n’est pas possible d’identifier la droite (on ne peut pas identifier de fagon
unique une droite passant par un seul point).

y/\

Yip--------

Yo

Yo— )1

b=y — X1
xo—y

FIGURE 4.4 - Trouver I'’équation d’une droite avec deux points.

Bl o222

o3l
o
v

2.3. Déterminer I'intersection d’une droite et de I’axe des abscisses

On cherche la valeur de x telle que ax + b = 0.

Il s’agit donc de résoudre une simple équation linéaire dont le résultat est x = ——.
a

YA _y=ax+b

\
Q|
H\’

FIGURE 4.5 — Représentation graphique de 'abscisse a I'origine.

2.4. Déterminer I'intersection de deux droites

Soient deux droites distinctes :
y=a;x+b;

y =asx + b,
ol a; # a, (autrement les droites sont paralleles et n’admettent donc pas d’intersection).

On cherche le point d’intersection (x*, y*), celui-ci doit vérifier :

Cl]_X* + b1 = azx* + bz
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soit de facon équivalente :

b,—b
x'=2—1 (sia; #a,)
a—as

Et on déduit :

Yy =a;x*+b; =a,x* + b,

y=a;x+b;

N4

FIGURE 4.6 - Représentation graphique de l'intersection de deux droites.

3. Fonctions polynomiales

3.1. Définition

Définition 2.
On appelle polynéme de degré n € N la fonction de R dans R donnée par :

n—1

P(x)=a,x"+a, 1 x" .. tax+ag

ol les coefficients {a;}" ; sont réels et a, # O (sinon le polynome n’est pas de degré n mais au mieux
n—1).

On peut voir le polyndme comme une généralisation de la droite. Pourn=1,on a:
fx)=a;x+ag

c’est-a-dire 'équation de la droite.
Les puissances de x, c’est-a-dire les termes x' pour i = 1,...,n, sont des mondmes.

Un polynome est une combinaison linéaire de mondmes.
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y y

/\y:—x2+2x+1

\/y:xz—2x—1 y=—x*-1

3 y=x5—5x3+4x

FIGURE 4.7 — Représentation graphique de différents polynomes.

On va beaucoup s’intéresser a la (c’est-a-dire a les mettre sous des formes
simples de produits de mondmes) et a la (C’est-a-dire les valeurs de x pour
lesquelles le polyndéme est égal a 0). On verra également que ces deux questions sont tres liées.

Définition 3.
Une racine x* d’un polynéme de degré n, P,(x), est une valeur de x telle que P,(x*) = 0.

Graphiquement, les racines réelles d’'un polynéme correspondent a Uintersection de la courbe représen-
tative du polynéme et de U'axe des abscisses.

Un polynome peut avoir plusieurs racines, on verra plus loin que le nombre de racines est lié au degré du
polynéme.

3.2. Comment trouver la racine d’une équation d’ordre 1 ?

n =1 dans ce cas. Il suffit de résoudre une équation linéaire. On sait faire.

b
f(x*):0<:>ax*+b=0<:>x*=—a cara#0
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Il n’y a donc qu’une seule racine possible ici (car a # 0).
Si a = 0, la droite est horizontale car y ne dépend pas de x. Il n’y a donc pas de solution (saufsi b =0
également, alors dans ce cas il y a une infinité de solutions).

3.3. Comment trouver les racines d’un polynéme d’ordre 2 ?

Définition 4.
Soit le polynéme d’ordre 2 :
f(x)=ax?>+bx+c aveca#0
Son discriminant est défini comme :
A = b%—4ac
Le nombre et la nature des racines dépendent du signe du discriminant :

e si A >0, le polynéme posséde deux racines réelles :

., —bEfVvA
X'=—
2a
. . . L . . b
» si A =0, le polyndme posseéde une racine réelle de multiplicité deux, x* = ~oa"
a

e si A <0, le polynéme ne posséde pas de racine réelle mais deux racines complexes conjuguées :
., —bxi/—A
2a

X

ol i est le nombre imaginaire tel que i2 = —1.

Faisons la preuve de la méthode du discriminant.

Divisons f par a # 0 (sinon f n’est pas un polynéme d’ordre 2). Les racines de f (x) sont aussi les racines
de g(x) :
f(x) — 2

b c
glx)= X“+—=x+ -

a a a
Pour retrouver le résultat du théoréme, nous allons faire apparaitre des termes qui se compensent (en

orange et bleu) puis factoriser g(x) en utilisant 'identité remarquable : (a + )? = a® + 2af + B2 :

c
g(x)=x*+ =x +—
a

9 b 2 b2

=X’ +20—x+— ———=+-

a 4q2 4a2  a

( )2 b2 ¢

= X+ — [ —

2a 4a2  a

avec A = b? — 4ac le discriminant.



FONCTIONS USUELLES 3. FONCTIONS POLYNOMIALES 46

Si A > 0, utilisons l'identité remarquable : a®? — 32 = (a — )(a + ) et appliquons la racine carrée d’'un
nombre positif ou nul VA :

b VA b VA
g(x)z(x+———a)(x+—+—)

2a 2 2a 2a
b—VA b+ VA
=[x+ x+—
2a 2a
Les racines du polynéme sont donc :
- s __b-VA
b—vA b+vA -
=0 < =0 = |x+— +—— =0 = 2a O
) g(x) (x 2a ) (x 2a ) = b+ vA
2a
2 b
Si A =0, le polyndme se réécrit : (x + 2—) = 0. Le résultat se simplifie en x* = o0 racine unique.
a a

Enfin, si A <0, il n’y a pas de solution réelle et il faut chercher ailleurs.

Pour trouver des solutions a cette équation il faut sortir de 'ensemble des réels et imaginer un ensemble ou
cette équation admette une (des) solution(s) = Les nombres complexes. ..

On définit 'ensemble des nombres complexes noté C, dont R est un sous-ensemble, en « imaginant » que
'équation x? = —1 admette une solution que nous noterons i.

i est le nombre imaginaire qui se définit par i = —1.

Tout nombre complexe x € C peut s’écrire sous la forme :
x=a+i-b

ol a € R est la partie réelle de x et b € R la partie imaginaire.

Im{x},\
3+ ® 2+3i
2+
1 T //
1 1 1 ! 1 1 1 \
-3 -2 -1 1 2 3 " Re{x}

FIGURE 4.8 — Représentation graphique d’un nombre complexe
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On peut donc calculer la racine carrée de A < 0 en remplacant le signe négatif par i2. Il vient :

b iv—A b iv—A
gx)=|x+—- X+ —+
2a 2a 2a 2a

( b—i —A)( b+i¢—A)
=|lx+——|[x+——
2a 2a

Les racines du polynéme sont donc des complexes conjugués dans ce cas :

. b—iv—A
b—iv—A b+iv—A X ==
=0 & =0 &= + — +— =0 = 2a O
7920 = 5)=0 o= (s TpR ) PR o o 7T
2a
Illustration graphique
A<O A=0 A>0
=
A
St
X x* X X x; X
x* * *
o X X1 XZ
v x
S x

FIGURE 4.9 - Tous les cas possibles de racines réelles pour les polynémes d’ordre 2.

3.4. Comment trouver les racines d’un polynéme d’ordre supérieur ?

De la méme facon que pour les polyndme d’ordre 2, il existe des formules (par radicaux, c’est-a-dire qui
n’utilisent que les opérations usuelles et des racines) pour calculer les solutions des équations polynomiales
de degré 3 ou 4. Mais ces formules sont assez difficile a lire.

En pratique, dans la vie d'un étudiant, on cherche des « racines évidentes » (petits entiers), et factorise le
polynome pour réduire le degré du polyndéme dont il restera a calculer les racines.On utilisera pour cela la
division euclidienne appliquée aux polynémes ou la méthode des coefficients indéterminés.

En pratique, dans la vraie vie, on utilise un ordinateur pour calculer numériquement les racines.

Définition 5.
Soient deux polynémes S(x) et T(x) # 0, alors il existe deux polynémes Q(x) et R(x) uniques tels que
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S(x)=Q(x)T(x)+R(x), avec R(x) = 0 ou un polynéme de degré inférieur au polynéme T (x).
Q(x) est le quotient de la division euclidienne de S(x) par T(x).
R(x) est le reste de la division euclidienne.
Si le reste de la division euclidienne est nul, on dit qu’on a factorisé le polynome S(x), puisque S(x) =
Q(x)T (x).

Exemple 1.

Soient les polynomes S(x) = x> —2x?+x+3 et T(x) =x + 1.

La division de S(x) par T(x) :

x*—2x*+x+3 x+1
— x4 x?
0—3x2+x+3 x2—3x+4
— —3x2—3x
0+4x+3
— 4x+4
0—1

Le quotient est Q(x) = x2 —3x + 4 et le reste R(x) = —1.
On peut donc écrire :

xP—2x?+x+3=(x+1D)(x2—3x+4)—1

Exemple 2.
Soient les polynomes S(x) = 2x* —x3—2x2 +3x—1et T(x)=x?—x +1.

La division de S(x) par T(x) :

2x*—x®—2x2+3x—1 xX2—x+1

—  2x*—2x% +2x?

x3—4x?+3x—1 2x2+x—3

— xX*—x%2 + x

—3x2+2x—1
— —3x2+43x-3

—x+2
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Le quotient est Q(x) = 2x2 4+ x — 3 et le reste R(x) = —x + 2.
On peut donc écrire :

2t —xP—2x?4+3x—1=(x?—x+1)2x%2+x—3)—x+2

Exemple 3.
Soient les polynémes S(x) = x3 + 6x%2 —x —30 et T(x) = x +5.

La division de S(x) par T(x) :

x3+6x2—x—30 x+5
—  x345x?
0+x%2 —x —30 xX24+x—6
— x?+45x
0 —6x —30
— —6x —30
0

Le quotient est Q(x) = x? + x — 6 et le reste est nul.
On peut donc écrire :
3 2 _ 2
x°+6x°—x—30=(x+5)(x*+x—06)

Lorsque le reste de la division euclidienne est nul, c’est-a-dire lorsqu’il est possible d’écrire S(x) = Q(x) T (x),
alors les racines de Q(x) sont des racines de S(x) et les racines de T(x) sont des racines de S(x).

Dans lautre sens, si x* est une racine de S(x) alors x* est une racine de Q(x) ou une racine de T(x).
Dans le dernier exemple on a T(x) = x + 5, donc —5 est une racine de S(x) = x* + 6x2 — x — 30.

Plus généralement, si x* est la racine d’un polynéme S(x), alors on peut toujours factoriser celui-ci sous la
forme : S(x) = (x — x*)Q(x).

Définition 6.
Un polynéme de degré 2 est une fonction de R dans R définie par :
flx)=ax?>+bx+c

avec a # 0, b et ¢ des parametres réels.

Une racine du polynéme de degré 2 est une valeur de x, notée x*, telle que :
ax*24+bx* +c=0

Cette équation admet au plus deux racines réelles.
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Si x] et x} sont deux racines réelles, alors on a :
ax?+bx+c=a(x —x7)(x —x3)
pour tout x € R
Définition 7.
Soit P,(x) un polynéme de degré n de R dans R (a,, # O le coefficient de x™).

Le polynéme possede au plus n racines réelles x” pour Vi = 1,...,n qui vérifient toutes :

Pn(x;) =0
Le polynéme peut alors étre mis sous la forme :

Py(x) =a,(x—x7)...(x—x})
pour tout x € R

Exemple 4.
Soit le polyndme de degré deux f(x) = x2 — 1. Les racines de ce polyndme sont les solutions de 'équation :

x*—1=0
c’est-a-dire les valeurs de x telles que x2 = 1. On voit immédiatement qu’il existe deux solutions :
* __ *
xj=—1 e x;=1
et on retrouve donc une identité remarquable bien connue :

2—1=(x+1(x—-1)

Exemple 5.
Soit le polyndme de degré deux f(x) = x? —2x + 1. Les racines de ce polynéme sont les solutions de
I'équation :
x?—2x+1=0
On reconnait une identité remarquable :
x2—2x+1=(x—-1P2=(x—-1)(x—1)
Ainsi x* = 1 est une racine. On dit qu’il s’agit d’une racine double (ou de multiplicité deux) a cause la

puissance deux le terme x — 1. On a donc :

xj=1 et x;=1

Exemple 6.
Soit le polyndme de degré deux f(x) = x2 + 1. Les racines de ce polyndme sont les solutions de I'équation :

x2=-1

Il n’existe pas de solution réelle a cette équation, car le carré d'un nombre réel est toujours positif. Mais on
peut trouver dans les complexes...

Exemple 7.
Soit le polynome de degré 3 :



FONCTIONS USUELLES 3. FONCTIONS POLYNOMIALES 51

On note que pour x =1,o0ona:
7 7 1 8—-14+7-1
ND=1-l4Ll_-_°87"77/7° _
f) 4 8 8 8
On sait donc qu’on peut factoriser (x — 1), c’est-a-dire écrire f(x) comme le produit d’un polynéme de

degré 2 et de (x —1).

0

Pour trouver le polynéme de degré 2 on peut faire une division euclidienne comme précédemment, ou
procéder par la méthode dite des « coefficients indéterminés ».

Postulons f(x) = (x —1)(ax? + bx + c) et identifions les paramétres a, b et ¢ en développant I'expression.
Nous devons donc avoir :

1
xg—zx2+zx——=(x—1)(ax2+bx+c)
4 8 8
C’est-a-dire :
3 7 2,7 1 3 2 2
x°——=x“+-x——-—=ax’+bx*+cx—ax“—bx—c
4 8 8

=ax®+(b—a)x®>+(c—b)x—c

Par identification des coefficients par monéme, on a donc :

1 =a 1
a =
—3 =b-a 3
; = b =—3%
g =c—b 1
c =gz
. :
Et donc :
1 1
xs—zxz+zx——={x—1WF2—§x+—)
4 8 8 4 8

Il existe des algorithmes plus généraux pour trouver les zéros d’une fonction, c’est a dire des valeurs de x
telles que f(x) = 0. On verra une version simple de ces algorithmes (qui reposent souvent sur des calculs
de dérivées).

3.5. Les fonctions rationnelles

Définition 8.
x
Une fonction rationnelle est une fonction de la forme I%, ol p(x) et g(x) sont des fonctions polyno-
q(x

miales, c’est-a-dire :
X+ X4+ ax +ag
BnX™+ B xm 1+ + Bix+ By

fx)=

Si g(x) est un polynéme de degré 0 alors f (x) est une fonction polynomiale.

La fonction f est a valeur dans R, mais le domaine de la fonction n’est généralement pas R. Il faut exclure
les points ol g(x) est nulle, c’est-a-dire les racines de g(x). Ainsi :
fi {xeR|q(x)#0} —R

_p0)

SREANTES



FONCTIONS USUELLES 4. FONCTIONS PUISSANCES 52

e

_1
flo) =222

X2 —X

FIGURE 4.10 — Exemple de fonction rationnelle.
4. Fonctions puissances

4.1. Généralités

Définition 9.
On appelle fonction puissance les fonctions de la forme :

flx)=x*

ou a est une constante réelle.

Le domaine de définition dépend de a.

Qs
I
<
)

Si a € Q, cest-a-dire 'l existe p et g dans N tels que a = B, alors on écrit : x% = x

Si a est un entier naturel, alors le domaine de définition est R.
Si a est un entier négatif, alors le domaine de définition est R \ {0}.

Si a = —, le domaine de définition est R si g est impair et R, sinon.

q
y
y=4x
1____
0 1 x

FIGURE 4.11 - Différentes fonctions puissance.
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4.2. Quelques regles de calcul a bien connaitre
x4 Xb — xa+b

On se souvient que x¢ = x x -+ X X.
~—_——

a fois

Donc en revenant a cette définition si on a un doute :
b

xax =X X e XXXX X XX

~~

a fois b\f;is

a+b fois

— xa+b

(xa)b — xab

1 b
On en déduit : (x7)b = x=a

a a a
x4yt =(xy)
a a __
X yd=xX-tXXXYX--Xy
D ~
a fois a fois
- xy X oo X xy
| —"
a fois
— a
=(xy)
i — X_a
xa
Pour s’en convaincre, calculons :
Xt xx Tt =x"1
%0

grace au point 1. De I'égalité, il vient :

xCl
1 _ .
x_a
Grace au point précédent et aux regles de calcul des fractions :
1 1 x4 a
= — = 1 X —=X
x—a L 1

4. FONCTIONS PUISSANCES

53
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5. Logarithme et exponentielle

5.1. Logarithme

Proposition 1.
Il existe une unique fonction, notée In :]0, +oo[— R telle que :

In'(x) = % (pour tout x > 0) et In(1) =0.
De plus cette fonction vérifie (pour tout a,b > 0) :
In(a x b) =Ina+1nb,
ln(%) =—Ina,
In(a™) =nlna, (pour tout n € N)
In est une fonction continue, strictement croissante et définit une bijection de ]0,+00[ sur R,

In(1+x) -1

lim,_,o =

S LA Wb o=

la fonction In est concave et Inx < x — 1 (pour tout x > 0).

Inx

FIGURE 4.12 - La fonction logarithme néperien.

Remarque.
Inx s’appelle le ou aussi . Il est caractérisé par In(e) = 1. On
définit le par
In(x)
1 ==
0g,(x) In(@)

De sorte que log,(a) = 1.
Pour a = 10 on obtient le log,, qui vérifie log;,(10) = 1 (et donc log;,(10") = n).
Dans la pratique on utilise 'équivalence :

x=10" < y =log;y(x)

En informatique intervient aussi le logarithme en base 2 : log,(2") = n.
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5.2. Exponentielle

Définition 10.
La bijection réciproque de In :]0, +oo[— R s’appelle la fonction , notée exp : R —]0,4+00[.

y exp x
e — — -
4/1 i
0o 1 X

FIGURE 4.13 - La fonction exponentielle.

Pour x € R on note aussi e* pour exp x.

Proposition 2.

La fonction exponentielle vérifie les propriétés suivantes :
» exp(lnx) = x pour tout x >0
 In(expx) = x pour tout x € R

o exp(a+ b) =exp(a) x exp(b)
exp(a)

exp(b)
o exp(nx) = (expx)"

e exp: R —]0,+00[ est une fonction continue, strictement croissante vérifiant lim,_,_., expx = 0 et
lim, _,, oo €Xp = +00.

e exp(a—b) =

o La fonction exponentielle est dérivable et exp’ x = exp x, pour tout x € R. Elle est convexe et expx > 1+x.

Remarque.
La fonction exponentielle est I'unique fonction qui vérifie exp’(x) = exp(x) (pour tout x € R) et exp(1) =e.
Ol e~2,718... est le nombre qui vérifie Ine = 1.

5.3. Comparaison des fonctions usuelles

Comparons les fonctions In x, exp x avec x :

Proposition 3.

. Inx . exp x
lim — =0 et lim = +00.
x—+00 x X—+00 X




FONCTIONS USUELLES 5. LOGARITHME ET EXPONENTIELLE 56

Y eXp X x4 (a>1)

X

x@ (a<1)

Inx

><V

FIGURE 4.14 — Comparaison des fonctions usuelles.

Démonstration.

1. Onavulnx < x—1 (pour tout x > 0). Donc Inx < x donc ln‘/‘g < 1. Cela donne

2
oot V) mvE_myga 2
Sox x0T x0T Vx Jx oYX

Cette double inégalité entraine lim,_,, o, IHTX =0.

2. Onavuexpx > 1+ x (pour tout x € R). Donc expx — +00 (lorsque x — +09).

x In(expx) Inu
exp x exp x u
_ . . Inu x
Lorsque x — +00 alors u = expx — +00 et donc par le premier point =~ — 0. Donc apx — 0 etreste
positive, ainsi lim,_, | oo “2~ = +00.
O

Mini-exercices.
1. Montrer que In(1 +e*) = x +1In(1 + ™), pour tout x € R.

2. Etudier la fonction f (x) = In(x? + 1) —In(x) — 1. Tracer son graphe. Résoudre 'équation (f (x) = 0).
Idem avec g(x) = % Idem avec h(x) = x*.

3. Expliquer comment log;, permet de calculer le nombre de chiffres d’un entier n.

2 2
4. Montrer In(1+x) > x— % pour x > 0 (faire une étude de fonction). Idem avec e* > 1+ x + % pour
tout x > 0.
5. Calculer la limite de la suite définie par u, = (1 + %)n lorsque n — +00. Idem avec v, = (%)n et

1
w,=nn.
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6. Exercices

TD

Exercice 26
Soient les ensembles :

& =1{(1;2),(2;8),(2;3)}
& ={(x;y)lx eRAXx <y}
& ={(x;y)lx eRAy =x7}

6. EXERCICES

E={(x;)y=x*si0<x<2, y=3—xsi2<x<3, y=3six=3}

Déterminez quels ensembles représentent une fonction.

Exercice 27
Soit la fonction :
f:R->R
x = flx)=x*+2x+4
Calculer :

fle+h)—f(x)
h

Interpréter cette expression.

Exercice 28
La fonction suivante est-elle injective ?

f:R->R
x—= fx)=x*+x—2

Exercice 29
Soient les fonctions f(x) = x +2 et g(x) = 2x +5.

1. Calculer h(x) = (g o f)(x) = g (f(x)) et m(x) = (f o g)(x) = f (g(x)).

2. Calculer f~!(x) et g7(x).
3. Calculer h™!(x) et m*(x).

4. Caleuler (flog ) (x) et (g7 o f)(x)
Comparer les résultats des deux derniéres questions.

Exercice 30
Quel est le domaine de définition des fonctions suivantes ?

L fx)=2%

2. f(x)=4+5

3. f(x) =2+

4. f(x)=17+3x+ ¢
5. f(x)=5— 2

Exercice 31
Exprimer a I'aide de quantificateurs les propositions suivantes :

57
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La fonction f : R — R n’est pas nulle.
La fonction f : R — R ne s’annule pas sur R.
La fonction f : R — R n’est pas 'identité de R.

La fonction f : R — R est croissante sur R.

ook W N

La fonction f : R — R n’est pas croissante sur R.

Exercice 32
Montrer que la fonction définie sur R f(x) = x% + 2x + 1 admet un unique minimum en x = —1.

Exercice 33
Sur un marché, la demande et I'offre pour un bien sont caractérisés par :

D(p):q=—2p*+3

S(p):q=p*+5p+2
ol p est le prix du bien et g sa quantité (on s’intéresse aux valeurs positives de p et q). Calculer la
quantité d’équilibre et le prix d’équilibre.

Exercice 34
Montrer qu’il existe un unique polynéme d’ordre deux passant par les points (0,2), (—2,16) et
(1,4).

Exercice 35
Calculer les racines de P(x) = x2 — 2x — 3 sans utiliser les formules usuelles.

Exercice 36
Sans calculer le discriminant, montrer que le polynéme P(x) = x? — 2x + 2 défini sur R n’admet
pas de solution réelle.

Exercice 37
Soit P(x) = x® —8x? + 23x — 28. Déterminer les racines du polyndéme P sachant que la somme de
deux des racines est égale a la troisieme.

Exercice 38
Chercher les solutions des équations suivantes :

1. x3—2x2+2x=0
x3+2x>—x—2=0
x*—5x24+4=0
x?—24/2x+2=0
x}—4x+3=0

@k W

Exercice 39
Trouver trois entiers naturels consécutifs tels que la somme de leurs carrés est égale a 50.

Exercice 40

Une fonction f est dite paire si f (—x) = f(x) et impair si f (—x) = —f (x). Par exemple, la fonction
f(x) = x? est paire car f(—x) = (—x)? = (—1)?*x = x, la fonction f(x) = x*® est impaire car
f(—x) = (—x3) = (—1)%x® = —x3. Etudier la parité des fonctions suivantes :
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1. f(x)=e"—e™™

2. g(x)=%5
3. h(x)= —<

(ex+1)?
Exercice 41
Chercher des solutions réelles pour les équations suivantes :
1. e —e*—6=0
2. 3e*—=7e*—=20=0

Exercice 42
Résoudre en x et y les systemes d’équations suivants :

0 {zzfy =10 (i) {ex —2e¥ =-5 (i) {Sex —e =19

y = % 3eX+e¥ =13 eXty =30

Exercice 43
Chercher les solutions réelles pour les équations suivantes :

1. In(x>—1)—In(2x—1)+1In2=0
2. In(x+2)—In(x+1)=In(x—1)

Entrainement

Exercice 44

59

Soit la fonction f définie sur R par f(x) = In(x + v/ x2 + 1). Etudier son sens de variation. Définir

que c’est une bijection et calculer sa fonction réciproque.

Exercice 45
Déterminer les solutions de I’équation suivante :

1. x2—4x/2+6=0.
2. x’+x+1=0.

Exercice 46
Soit la fonction suivante : Yx € R, f(x) = x> — 7x? + 14x — 8. Résoudre f(x) = 0.

Exercice 47

Soit la fonction f(x) = x? + 2x + 2 définie pour toutes valeurs de x dans R. Identifier x* qui

minimise f puis calculer f(x*).

Exercice 48
Calculer (x + 2)° directement puis avec le bindme de Newton.

Exercice 49
Déterminer les ensembles de définition des fonctions suivantes :

1. f(x)=3x*—7x3>+8x—2
2. f(x)=17x*— J/x
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3. f(x)=vx2+1
4 f)=4-%

5. f(x)=%=
6. f(x) =1

7. f(x)= \/xlz;fz-

Auteurs du chapitre
o Arnaud Bodin, Niels Borne, Laura Desideri,
« Stéphane Adjemian,

e Frédéric Karamé

6. EXERCICES

60



Limites et
continuiteée

Vidéo M partie 1. Notions de fonction

Vidéo W partie 2. Limites

Vidéo m partie 3. Continuité en un point

Vidéo M partie 4. Continuité sur un intervalle
Vidéo W partie 5. Fonctions monotones et bijections
Motivation

Les équations en une variable x qu’on sait résoudre explicitement, c’est-a-dire en donnant une formule pour
la solution, sont tres particulieres : par exemple les équations du premier degré ax + b = 0, celles du second
degré ax?+ bx +c¢ =0.

Mais pour la plupart des équations, il n’est pas possible de donner une formule pour la ou les solutions.
En fait il n’est méme pas évident de déterminer seulement le nombre de solutions, ni méme s’il en existe.
Considérons par exemple I'équation extrémement simple :

x+expx =0

Il n’y a pas de formule explicite (utilisant des sommes, des produits, des fonctions usuelles) pour trouver la
solution x.

Dans ce chapitre nous allons voir que grice a I'étude de la fonction f (x) = x +exp x, il est possible d’obtenir
beaucoup d’informations sur 'ensemble des solutions de I'équation x + expx = 0, et méme de ’équation
plus générale x +expx =y (ou y € R est fixé).

x + exp(x)

Nous serons capables de prouver que pour chaque y € R I'équation « x + exp x = y » admet une solution
X, que cette solution est unique, et nous saurons dire comment varie x en fonction de y. Le point clé de
cette résolution est 'étude de la fonction f et en particulier de sa continuité. Méme s’il n’est pas possible
de trouver I'expression exacte de la solution x en fonction de y, nous allons mettre en place les outils
théoriques qui permettent d’en trouver une solution approchée.


http://www.youtube.com/watch?v=_4okV9eXD8k
http://www.youtube.com/watch?v=9L12nIsoYX0
http://www.youtube.com/watch?v=TJLpXWXPsFs
http://www.youtube.com/watch?v=_cA6CkKYZxU
http://www.youtube.com/watch?v=TAUg4HL5fHs
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1. Propriétes des fonctions

1.1. Définitions

Définition 1.

Une d’une variable réelle a valeurs réelles est une application f : U — R, ou U est une partie de
R. En général, U est un intervalle ou une réunion d’intervalles. On appelle U le

de la fonction f.

Exemple 1.

La fonction inverse :
f:]—O0,0[U]O,—FOO[ — R

1
X — =,
x
Le d’une fonction f : U — R est la partie Iy de R? définie par Iy = {(x,f(x)) | x € U}.

Le graphe d’une fonction (a gauche), 'exemple du graphe de x — % (a droite).

Yy

f(x)s

AL SRS

1.2. Opérations sur les fonctions

Soient f : U —» R et g : U — R deux fonctions définies sur une méme partie U de R. On peut alors définir
les fonctions suivantes :

e la de f et g est la fonction f + g : U — R définie par (f + g)(x) = f(x) + g(x) pour tout x € U;
e le de f et g estla fonction f x g : U — R définie par (f x g)(x) = f(x) x g(x) pour tout x € U ;
e la A €Rde f estlafonction A-f : U — R définie par (A- f)(x) = A-f(x)

pour tout x € U.
Comment tracer le graphe d’'une somme de fonction ?

(f +8)(x)e

g(x)e

NS
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1.3. Fonctions majorées, minorées, bornées

Définition 2.

Soient f : U —» R et g : U — R deux fonctions. Alors :

« f2gsi VxeU f(x)>g(x);

e f>0si VYxeU f(x)>=0;

e f>0si YxeU f(x)>0;

o f estdite surUsi da€eR VxeU f(x)=a;
o f estdite surUsi VxeU f(x)=0.

Définition 3.
Soit f : U — R une fonction. On dit que :

o f est surUsi AM eR VxeU f(x) < M;

o f est surUsi dmeR Vx €U f(x) > m;

o f est sur U si f est a la fois majorée et minorée sur U, c’est-a-dire si AM e RVx € U |f(x)| <
M.

Voici le graphe d’une fonction bornée (minorée par m et majorée par M).

1.4. Fonctions croissantes, décroissantes

Définition 4.
Soit f : U — R une fonction. On dit que :

o f est surUsiVx,yeU x<y = f(x)<f(y)

o f est surUsi Vx,yeU x<y = f(x)<f(y)

o f est surUsi Vx,yelU x<y = f(x)=f(y)

o f est surUsi Vx,yeU x<y = f(x)>f(y)

e f est (resp. ) sur U si f est croissante ou décroissante (resp.

strictement croissante ou strictement décroissante) sur U.

Un exemple de fonction croissante (et méme strictement croissante) :
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fO)e--- ‘
l
|
f(X) 77777777777777 f :
| |
l l
| |
° .
X Y
Exemple 2.
« La fonction racine carrée est strictement croissante.
x+—> /x
« Les fonctions exponentielle exp : R — R et logarithme In :]0,+00o[— R sont strictement croissantes.
) R—R , N o :
e La fonction valeur absolue n’est ni croissante, ni décroissante. Par contre, la fonction
x — |x|
est strictement croissante.
x —> | x|

1.5. Parité et périodicité

Définition 5.
Soit I un intervalle de R symétrique par rapport a O (c’est-a-dire de la forme ]—a, a[ ou [—a,a] ou R).
Soit f : I — R une fonction définie sur cet intervalle. On dit que :

o f est si Vxel f(—x)=f(x),

o f est si Vxel f(—x)=—f(x).

Interprétation graphique :
o f est paire si et seulement si son graphe est symétrique par rapport a ’axe des ordonnées (figure de
gauche).
» f est impaire si et seulement si son graphe est symétrique par rapport a l'origine (figure de droite).

Y, y

\/ x x

Exemple 3.
« La fonction définie sur R par x — x2" (n € N) est paire.
« La fonction définie sur R par x — x2""! (n € N) est impaire.
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Définition 6.
Soit f : R — R une fonction et T un nombre réel, T > 0. La fonction f est dite de période T
si VxeR f(x+T)=f(x).

=
+o------°
H

A
<@ - - - - - N

Interprétation graphique : f est périodique de période T si et seulement si son graphe est invariant par la
translation de vecteur Ti, oli { est le premier vecteur de coordonnées.

Exemple 4.
Les fonctions sinus et cosinus sont 27t-périodiques. La fonction tangente est -périodique.

Mini-exercices.

1. Soit U =]—00,0[ et f : U — R définie par f(x) =1/x. f est-elle monotone? Et sur U =]0, +oo[ ?
Et sur U =]— 00,0[U]0,+00[?

2. Pour deux fonctions paires que peut-on dire sur la parité de la somme ? du produit ? et de la composée ?
Et pour deux fonctions impaires ? Et si I'une est paire et 'autre impaire ?

3. On note {x} = x — E(x) la partie fractionnaire de x. Tracer le graphe de la fonction x — {x} et
montrer qu’elle est périodique.

4. Soit f : R — R la fonction définie par f(x) = 5 fxz. Montrer que |f| est majorée par %, étudier les

variations de f (sans utiliser de dérivée) et tracer son graphe.

2. Limites

2.1. Limite en un point

Soit f : I — R une fonction définie sur un intervalle I de R. Soit x, € R un point de I ou une extrémité de I.

Définition 7.
Soit £ € R. On dit que si

Ve>0 36>0 Vxel |x—xpl<d = |f(x)—{|<e€

On dit aussi que . On note alors lim f(x)=/{ ou bien lim f =¢.
X—Xq Xo
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Remarque.
o Linégalité |x — x| < 6 équivaut a x €]xy — 8, x + 6[. L'inégalité |f (x) —£| < € équivaut a f(x) €
16 —e,0+€l.
» On peut remplacer certaines inégalités strictes « < » par des inégalités larges « < » dans la définition :
Ve>0 36>0 Vxel |x—xy <6 = [f(x)—{|<e
» Dans la définition de la limite

Ve>0 36>0 Vxel |x—x9l<é = |f(x)—L|<e

le quantificateur Vx € I n’est 1a que pour étre stir que I'on puisse parler de f(x). Il est souvent omis et
'existence de la limite s’écrit alors juste :

Ve>0 36>0 |x—xpl <6 = |f(x)—L]|<e.

» N’oubliez pas que 'ordre des quantificateurs est important, on ne peut pas échanger le Ve avec le 36 :
le & dépend en général du €. Pour marquer cette dépendance on peut écrire : Ye >0 36(e)>0...

Exemple 5.
e lim +/x = 4/x, pour tout x, > 0,
X—X(

« la fonction partie entiére E n’a pas de limite aux points x, € Z.

y y
@ —
E(x)

|

|

Jx 1

\/X_O e T :

| |

| — i

1 | 1 |

| 1

0 1 Xo x 0 1 xo € Z x

@ —

Soit f une fonction définie sur un ensemble de la forme ]a, x,[U]x, b[.

I Définition 8.
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e On dit que si
VA>0 36>0 Vxel |x—xg/<é6 = f(x)>A
On note alors lim f(x) = +oo.
e On dit que o si
VA>0 36>0 Vxel |x—x5/<6 = f(x)<-A

On note alors lim f(x) =—oo0.
X—Xq
y |
Ap---f-1--

2.2. Limite en I'infini

Soit f : I — R une fonction définie sur un intervalle de la forme I =]a, +00][.
Définition 9.
e Soit £ € R. On dit que si
YVe>0 dB>0 Vxel x>B = |[f(x)—{|<e
On note alors xl}+moof(x) =/{ ou Eon(}f =/.
e On dit que si
VA>0 3dB>0 Vxel x>B = f(x)>A

On note alors lim f(x)=+o00.
X—+00

2. LIMITES

67

On définirait de la méme maniere la limite en —oo pour des fonctions définies sur les intervalles du type

]—o00,al.

VA NI

\/
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Exemple 6.
On a les limites classiques suivantes pour toutn > 1 :

. n . n +00 si n est pair
e lim x"=+400 et lim x"=

x—=+00 X—=—00 —OQ si n est impair
. 1 . 1
e lim [—]=0 et lim [ — |=0.
x—+o00 \ xn x——00 \ xn
Exemple 7.

Soit P(x) = ap,x™ + a,_1x" 1+  +ayx +ay avec a, > 0 et Q(x) = by, x™ + by x™ 1+ -+ 4+ byx + by
avec b, > 0.

+00 sin>m
P(x) )a

m —— =17 in=
m 20 . sin=m
0

sin<m

2.3. Limite a gauche et a droite

Soit f une fonction définie sur un ensemble de la forme Ja, x,[U]x, b[.

Définition 10.

e On appelle en xg de f la limite de la fonction f|]x o[ €1 X0 et on la note lim f .
0> xa'
e On définit de méme la en xq de f : la limite de la fonction fha o[ €1 X0 et on la note
>4 0
lim f.
Xo

» On note aussi xlirg f(x) pour la limite a droite et xlirgcl f(x) pour la limite a gauche.
—Xo —Xo

x>X X <X

Dire que f : I — R admet une limite £ € R a droite en X signifie donc :
Ve>0 36>0 xg<x<x9+6 = [f(x)—{L|<e

Si la fonction f a une limite en x, alors ses limites a gauche et a droite en x, coincident et valent lg(rn f.
Réciproquement, si f a une limite a gauche et une limite a droite en x et si ces limites valent f (xo)o(si f
est bien définie en x,) alors f admet une limite en x.
Exemple 8.
Considérons la fonction partie entiére au point x =2 :

o comme pour tout x €]2,3[ ona E(x) =2, 0n a 1i2r+nE =2,

o comme pour tout x €[1,2[ ona E(x)=1,ona lizrpE =1.

Ces deux limites étant différentes, on en déduit que E n’a pas de limite en 2.

limite a droite  limy: E -+ ---------- A~

|
limite a gauche lim, E ------ SR
|
|
2

x‘
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2.4. Propriétés

Proposition 1.

Si une fonction admet une limite, alors cette limite est unique.

On ne donne pas la démonstration de cette proposition, qui est tres similaire a celle de I'unicité de la limite
pour les suites (un raisonnement par I'absurde).

Soient deux fonctions f et g. On suppose que X, est un réel, ou que xy = +00.

Proposition 2.
Si hmf =({€ER et hmg—E’GR alors :

hm()L fl=2a: épour tout A € R
11m(f+g)—€+€/

Xo

lim(f x g) =€ x ('

1 1
i { #0, alors lim— = —
si £ #0, alors gcronf 7

1
De plus, si hmf +00 (ou —o0) alors lim 17 =0.
Xo

Cette proposition se montre de maniére similaire a la proposition analogue sur les limites de suites. Nous
n’allons donc pas donner la démonstration de tous les résultats.

Démonstration. Montrons par exemple que si f tend en x, vers une limite £ non nulle, alors + 7 est bien

définie dans un voisinage de x; et tend vers 7
Supposons £ > 0, le cas £ < 0 se montrerait de la méme maniere. Montrons tout d’abord que f est bien
définie et est bornée dans un voisinage de x, contenu dans l'intervalle I. Par hypotheése

Ve'>0 36>0 Vxe€l xp—8<x<xy+6 = l—€' <f(x)<l+¢€.
Si on choisit €’ tel que 0 < €’ < £/2, alors on voit qu’il existe un intervalle J = IN Jxy, — &, xo + 6[ tel que

pour tout x dans J, f(x) > £/2 > 0, cest-a-dire, en posant M = 2/{ :

1
VxeJ 0<——<M.

f(x)
Fixons a présent € > 0. Pour tout x €J, on a
1 1y Je=fal
———|= — -
7 e’ T <)

Dong, si dans la définition précédente de la limite de f en x, on choisit €’ = EME, alors on trouve qu'’il existe

un 6 > 0 tel que
1 M M
VxeJ xq— 5<x<x0+5=>‘———’ 7|E—f(x)|<7€’=e.

flx) £

Proposition 3.
Silimf ={etlimg ={', alorslimgo f ={’.
Xo 4 Xo

Ce sont des propriétés que I'on utilise sans s’en apercevoir !
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Exemple 9.

Soit x — u(x) une fonction et x € R tel que u(x) — 2 lorsque x — x,. Posons f (x) = \/1 + @ + Inu(x).
Si elle existe, quelle est la limite de f en x;?
« Tout d’abord comme u(x) — 2 alors u(x)?> — 4 donc u(%)z - %f (lorsque x — x).
e De méme comme u(x) — 2 alors, dans un voisinage de x,, u(x) > 0 donc Inu(x) est bien définie dans
ce voisinage et de plus Inu(x) — In2 (lorsque x — x;).
o Cela entraine que 1+ ﬁ +Ilnu(x)—> 1+ ‘l‘ +1n2 lorsque x — x. En particulier 1+ ﬁ +Ilnu(x)>0
dans un voisinage de x,, donc f(x) est bien définie dans un voisinage de x,.

« Et par composition avec la racine carrée alors f(x) a bien une limite en x, et lim,_,, f(x) =

\/1+}‘+ln2.

Il'y a des situations ou 'on ne peut rien dire sur les limites. Par exemple si lim, f =+00 et lim, g=—00
alors on ne peut a priori rien dire sur la limite de f + g (cela dépend vraiment de f et de g). On raccourcit
cela en +00 — 00 est une forme indéterminée.
. . . : , Py o 0 [ee] 0
Voici une liste de formes indéterminées : +00 — 00 ; 0 x 00 ; — o ;1995 oo,
oo
Enfin voici une proposition tres importante qui signifie qu’on peut passer a la limite dans une inégalité large.

Proposition 4.
e Sif <getsilimf ={€Retlimg=1{€R, alors £ <L’
e Sif <getsi lgronf =400, alo:;) lzcmg =400.
o Théoréme des geondarmes ’

Sif <g<hetsilimf =limh=/{ &R, alors g a une limite en x, et limg = £.
Xo Xo Xo

AN

lim, f =lim, g=Ilim, h

N\

Mini-exercices.

2x%2—x—2
3x24+2x+2

en 0. Eten +0c0?

1. Déterminer, si elle existe, la limite de

CosXx b]

Vx

2. Déterminer, si elle existe, la limite de sin(%) en +o00. Et pour
3. En utilisant la définition de la limite (avec des €), montrer que lim,_,,(3x +1) =7.
4

. Montrer que si f admet une limite finie en x, alors il existe 6 > 0 tel que f soit bornée sur ]x,—
5, Xo + 5[

x2—4

. Et limx_,z 23743 !

5. Déterminer, si elle existe, lim,_,

V1t+x—v1+x2
X
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3. Continuité en un point

3.1. Définition

Soit I un intervalle de R et f : I — R une fonction.

Définition 11.
» On dit que f est si
Ve>0 36>0 Vxel |x—xol<d = |f(x)—f(xp)l<e

c’est-a-dire si f admet une limite en x,, cette limite vaut alors nécessairement f (xg).
» On dit que f est si f est continue en tout point de I.

Intuitivement, une fonction est continue sur un intervalle, si on peut tracer son graphe « sans lever le
crayon », c’est-a-dire si sa courbe représentative n’admet pas de saut.
Voici des fonctions qui ne sont pas continues en X :

y y y

. N

[
[
\
2

Exemple 10.
Les fonctions suivantes sont continues :
« une fonction constante sur un intervalle,
« la fonction racine carrée x — /x sur [0, +00[,
e les fonctions sin et cos sur R,
o la fonction valeur absolue x — |x| sur R,
« la fonction exp sur R,
o la fonction In sur ]0,+oco[.
A l'inverse, la fonction partie entiere E n’est pas continue aux points x, € Z, puisqu’elle n’admet pas de
limite en ces points. Pour x, € R \ Z, elle est continue en x.
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3.2. Propriétés

La continuité assure par exemple que si la fonction n’est pas nulle en un point (qui est une propriété
ponctuelle) alors elle n’est pas nulle autour de ce point (propriété locale). Voici 'énoncé :

Lemme 1.
Soit f : I — R une fonction définie sur un intervalle I et x, un point de I. Si f est continue en X, et si
f(xg) #0, alors il existe 5 > O tel que

Vx €lxg—6,x0+6[ f(x)#0

Démonstration. Supposons par exemple que f (xg) > 0, le cas f (xg) < 0 se montrerait de la méme maniere.
Ecrivons ainsi la définition de la continuité de f en x :

Ve>0 36>0 Vxel xe€lxyg—0,xg+0[= f(xp)—e < f(x)<f(xg)+e.

1l suffit donc de choisir € tel que 0 < € < f(xy). Il existe alors bien un intervalle J = IN ]xy— &, xy + & tel
que pour tout x dans J, on a f(x) > 0. O

La continuité se comporte bien avec les opérations élémentaires. Les propositions suivantes sont des
conséquences immédiates des propositions analogues sur les limites.

Proposition 5.
Soient f, g : I — R deux fonctions continues en un point xy € I. Alors
o A-f estcontinue en x (pour tout A € R),
e f 4+ g est continue en X,
o f X g est continue en Xy,
e si f(xq) # 0, alors % est continue en Xg.

Exemple 11.
La proposition précédente permet de vérifier que d’autres fonctions usuelles sont continues :
« les fonctions puissance x — x" sur R (comme produit x X x X --+),
o les polynomes sur R (somme et(p)roduit de fonctions puissance et de fonctions constantes),
P(x

» les fractions rationnelles x — Q) Sur tout intervalle ot le polynome Q(x) ne s’annule pas.

La composition conserve la continuité (mais il faut faire attention en quels points les hypotheses s’appliquent).

Proposition 6.
Soient f : I —» Ret g : J — R deux fonctions telles que f(I) C J. Si f est continue en un point xo € I et si g
est continue en f(xy), alors g o f est continue en Xx.
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3.3. Prolongement par continuité

Définition 12.
Soit I un intervalle, x, un pointde I et f : I \ {xy} — R une fonction.
» On dit que f est en xg si f admet une limite finie en x,. Notons alors
{=1limf.
Xo
« On définit alors la fonction f : I — R en posant pour tout x € [
. f(x) six#x
flx)= { ,
¢ si x = Xxg.

Alors f est continue en x, et on appelle le de f en x,.

/

Dans la pratique, on continuera souvent a noter f i la place de f.

Exemple 12.

Considérons la fonction f définie sur R* par f(x) = x sin(%). Voyons si f admet un prolongement par
continuité en 0?

Comme pour tout x € R* on a |f (x)| < |x|, on en déduit que f tend vers 0 en 0. Elle est donc prolongeable
par continuité en 0 et son prolongement est la fonction f définie sur R tout entier par :

. in(1) six#0
f(x):{xsm(x) s%x;é
0 six =0.
3.4. Suites et continuité

Proposition 7.
Soit f : I — R une fonction et x, un point de I. Alors :

pour toute suite (u,) qui converge vers X,

est continue en x, < .
f 0 la suite (f (u,,)) converge vers f(xq)

Démonstration.
= On suppose que f est continue en x, et que (u,) est une suite qui converge vers x, et on veut montrer

que (f (u,)) converge vers f(x).
Soit € > 0. Comme f est continue en X, il existe un 6 > 0 tel que

Vxel |x—xol <6 = |f(x)—f(x)l <e.
Pour ce §, comme (u,,) converge vers X, il existe N € N tel que

VneN n>N = |u,—xo| <.
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On en déduit que, pour tout n > N, comme |u, — Xxo| < &, on a |f (u,) — f (xg)| < €. Comme c’est vrai
pour tout € > 0, on peut maintenant conclure que (f (u,)) converge vers f (xg).

&= On va montrer la contraposée : supposons que f n’est pas continue en x et montrons qu’alors il existe
une suite (u,,) qui converge vers x et telle que (f (u,,)) ne converge pas vers f(xg).
Par hypothese, comme f n’est pas continue en X :

deg>0 V6>0 3Txsel telque |x5—xol <6 et|f(xs)—f(xp)l> €o-

On construit la suite (u,,) de la fagon suivante : pour tout n € N*, on choisit dans I'assertion précédente
0 =1/n et on obtient qu’il existe u, (qui est x;,,) tel que

ol <+ et 1f ()= F (o)l > €.

La suite (u,,) converge vers x, alors que la suite (f (u,)) ne peut pas converger vers f (x;).

Remarque.

On retiendra surtout 'implication : si f est continue sur I et si (u,) est une suite convergente de limite ¢, alors
(f (u,,)) converge vers f(£). On l'utilisera intensivement pour I'étude des suites récurrentes u,,; = f (u,) : si
f est continue et u, — £, alors f(£) =¢.

Mini-exercices.

1. Déterminer le domaine de définition et de continuité des fonctions suivantes : f(x) = 1/sinx,
g(x)=1/4/x+ L h(x)=In(x2%+x—1).

2. Trouver les couples (a, b) € R? tels que la fonction f définie sur R par f(x) = ax + b si x <0 et
f(x) =exp(x) si x > 0 soit continue sur R. Et si on avait f (x) = =5 + b pour x < 0?

3. Soit f une fonction continue telle que f(xy) = 1. Montrer qu’il existe & > 0 tel que : pour tout
x €lxg—0,xo+06[ f(x)> %

4. Etudier la continuité de f : R — R définie par : f (x) = sin(x) cos (%) si x # 0 et f(0) = 0. Et pour
g(x) = xE(x)?

x3+8
|x+2|

5. La fonction définie par f(x) = admet-elle un prolongement par continuité en —2?

6. Soit la suite définie par uy > 0 et u,,; = ,/t,. Montrer que (u,,) admet une limite { € R lorsque
n — 400. A l'aide de la fonction f(x) = +/x calculer cette limite.

4. Continuité sur un intervalle

4.1. Le théoreme des valeurs intermédiaires

Théoréme 1 (Théoréme des valeurs intermédiaires).
Soit f :[a, b] — R une fonction continue sur un segment.

Pour tout réel y compris entre f(a) et f(b),
il existe c € [a, b] tel que f(c)=y.

Une illustration du théoreme des valeurs intermédiaires (figure de gauche), le réel ¢ n’est pas nécessairement
unique. De plus si la fonction n’est pas continue, le théoréme n’est plus vrai (figure de droite).
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Y
f(b) Y,
y f(b)kffffff;;;;;;f
N e -
f(a) |
fla) v—/ l
a b X

Démonstration. Montrons le théoréme dans le cas ol f(a) < f(b). On considere alors un réel y tel que
f(a) < y < f(b) et on veut montrer qu’il a un antécédent par f.

1. On introduit ’ensemble suivant
A={xela,b]| f)<y}.
Tout d’abord I’ensemble A est non vide (car a € A) et il est majoré (car il est contenu dans [a, b)) : il
admet donc une borne supérieure, que ’on note ¢ = supA. Montrons que f(c) = y.

f(b)

f(a)

A ¢ = sup(A)

2. Montrons tout d’abord que f(c) < y. Comme ¢ = supA4, il existe une suite (u, ),y contenue dans A telle
que (u,) converge vers c. D’une part, pour tout n € N, comme u, € A, on a f(u,) < y. D’autre part,
comme f est continue en c, la suite (f (u,)) converge vers f(c). On en déduit donc, par passage a la
limite, que f(c) < y.

3. Montrons a présent que f(c) > y. Remarquons tout d’abord que si ¢ = b, alors on a fini, puisque
f(b) > y. Sinon, pour tout x €]c, b], comme x ¢ A, on a f(x) > y. Or, étant donné que f est continue
en ¢, f admet une limite a droite en ¢, qui vaut f (c) et on obtient f(c) > y.

4.2. Applications du théoreme des valeurs intermédiaires

Voici la version la plus utilisée du théoréme des valeurs intermédiaires.

Corollaire 1.
Soit f :[a, b] — R une fonction continue sur un segment.

Si f(a)- f(b) <0, alors il existe c €]a, b[ tel que f(c) =0.




LIMITES ET CONTINUITE 4. CONTINUITE SUR UN INTERVALLE 76

FB)>0F-mmmmmm e

fla)<O0]|--

Démonstration. 1l s’agit d’'une application directe du théoreme des valeurs intermédiaires avec y = 0.
L'hypothese f(a)- f(b) < 0 signifiant que f (a) et f(b) sont de signes contraires. O

Exemple 13.
Tout polynéme de degré impair posséde au moins une racine réelle.

Y x — P(x)

X

En effet, un tel polynome s’écrit P(x) = a,x" +--- 4+ a;x + ay avec n un entier impair. On peut supposer
que le coefficient a,, est strictement positif. Alors on a lim P = —o0 et lrirn P = +00. En particulier, il existe
—0Q oo

deux réels a et b tels que f(a) < 0 et f(b) > 0 et on conclut grace au corollaire précédent.

Voici une formulation théorique du théoréme des valeurs intermédiaires.

Corollaire 2.

Soit f : I — R une fonction continue sur un intervalle I.
Alors f (I) est un intervalle.

Attention! Il serait faux de croire que I'image par une fonction f de lintervalle [a, b] soit I'intervalle
[f (a),f(b)] (voir la figure ci-dessous).

y

f(b)

f(la, b))
fla}

Démonstration. Soient y;,y, € f(I), y; < Y. Montrons que si y €[y, y,], alors y € f(I). Par hypotheése,
il existe x1,x5 €I tels que y; = f(x1), ¥» = f(x,) et donc y est compris entre f(x;) et f(x,). D’apres le
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théoreme des valeurs intermédiaires, comme f est continue, il existe donc x €I tel que y = f(x), et ainsi
yef. O

4.3. Fonctions continues sur un segment

Théoréme 2.
Soit f : [a,b] — R une fonction continue sur un segment. Alors il existe deux réels m et M tels que
f([a,b]) =[m,M]. Autrement dit, l'image d’'un segment par une fonction continue est un segment.

Yy
M

Comme on sait déja par le théoréme des valeurs intermédiaires que f ([a, b]) est un intervalle, le théoréme
précédent signifie exactement que

Si f est continue sur [a, b]
alors f est bornée sur [a, b], et elle atteint ses bornes.

Donc m est le minimum de la fonction sur l'intervalle [a, b] alors que M est le maximum.

Démonstration.

1. Montrons d’abord que f est bornée.

e Pour r € R, on note A, = {x € [a,b] | f(x) > r}. Fixons r tel que A, # &, comme A, C [a, b], le
nombre s = supA, existe. Soit x,, — s avec x,, € A,.. Par définition f(x,) > r donc, f étant continue,
a la limite f(s) > r et ainsi s €A,.

» Supposons par I'absurde que f ne soit pas bornée. Alors pour tout n > 0, A, est non vide. Notons
s, = supA,. Comme f(x) > n+ 1 implique f(x) > n alors A,,; C A,, ce qui entraine s,,,; < s,.
Bilan : (s,) est une suite décroissante, minorée par a donc converge vers £ € [a, b]. Encore une fois
f est continue donc s,, — ¢, implique f(s,) — f(£). Mais f(s,) > n donc lim f (s,,) = +00. Cela
contredit lim f (s,) = f (£) < +00. Conclusion : f est majorée.

» Un raisonnement tout a fait similaire prouve que f est aussi minorée, donc bornée. Par ailleurs on
sait déja que f(I) est un intervalle (c’est le théoréme des valeurs intermédiaires), donc maintenant
f(I) est un intervalle borné. Il reste & montrer qu’il du type [m, M] (et pas Jm, M[ par exemple).

2. Montrons maintenant que f (I) est un intervalle fermé. Sachant déja que f (I) est un intervalle borné,
notons m et M ses extrémités : m = inf f (I) et M = sup f (I). Supposons par 'absurde que M ¢ f(I).
Alors pour t € [a,b], M > f(t). La fonction g : t — M+f(0 est donc bien définie. La fonction g est
continue sur I donc d’aprés le premier point de cette preuve (appliqué a g) elle est bornée, disons par
un réel K. Mais il existe y,, = M, y,, € f(I). Donc il existe x,, € [a, b] tel que y,, = f(x,) = M et alors
glx,) = m — +00. Cela contredit que g soit une fonction bornée par K. Bilan : M € f(I). De
méme on a m € f(I). Conclusion finale : f(I) =[m,M].

O



LIMITES ET CONTINUITE 5. EXERCICES 78

Mini-exercices.

1. Soient P(x) = x> —3x —2 et f(x) = x2¥ — 1 deux fonctions définies sur R. Montrer que I'’équation
P(x) =0 a au moins une racine dans [1,2]; I"équation f(x) = 0 a au moins une racine dans [0,1];
I’équation P(x) = f(x) a au moins une racine dans ]0, 2[.

2. Montrer qu’il existe x > O tel que 2* + 3* = 7%,

3. Dessiner le graphe d’une fonction continue f : R — R tel que f(R) = [0,1]. Puis f(R) =]0,1[;
fFR)=[0,1[; f(R) =]—00,1], f(R) =] — o0, 1[.

4. Soient f,g :[0,1] — R deux fonctions continues. Quelles sont, parmi les fonctions suivantes, celles
dont on peut affirmer qu’elles sont bornées: f +g, f x g, f/g?

5. Soient f et g deux fonctions continues sur [0, 1] telles que Vx € [0,1] f(x) < g(x). Montrer qu’il
existe m > 0 tel que Yx €[0,1] f(x)+ m < g(x). Ce résultat est-il vrai si on remplace [0,1] par R?

5. Exercices

TD

Exercice 50
Déterminer les limites des fonctions suivantes :

2
. x
1. llmx_,oo o

Inx

2. lim,_, o =

eX+3x2
X—00 4ex+42x2

. 3xInx
4. lim,_,, =5~

3. lim

Exercice 51
Identifier les limites suivantes :

2x+5
X—00 x2-3

1. lim

llm x3—4x%48
X—00  x246

ax?+bx+c

X—00 kx24+1x+m

x?—16
X—=—4 x+4
Ix] |x]|

lim,_,q+ 5 et lim,_,o- 5°

lim, o vVX2+1—+/x2—1

lim

lim

lim, ,oo VX2 +4x—Xx

® N o A WD

x342x%—x—2

lim,_, ,—5=

Exercice 52
Soit la fonction a valeurs réelles définie par morceaux :

6x +8 six <-—1
flx)=1-3x+7 si—1<x<2

x—1 sinon.
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Cette fonction est-elle continue sur R ?

Exercice 53
Soit la fonction a valeurs réelles définie par morceaux :

ax?+bx+1 six<2
f=1{" .
x“+ax+b sinon.

Donner les conditions sur les parametres a et b pour que la fonction soit continue sur R ?

Exercice 54
Soit la fonction f sur R a valeurs réelles, définie par :

_ my Six €{-1,0,1}
) {O sinon

En quels points la fonction f est-elle continue ?

Exercice 55
Soit la fonction définie sur R \ {—1} :
1+x
X)=
fix) x3+1

Cette fonction est-elle continue en -1 ? Est-il possible de la prolonger par continuité en -1?

Exercice 56
En utilisant la définition de la dérivée, calculer les dérivées des fonctions suivantes :

1. f(x)=4x*+3

2. g(x)=x", VneNetVxeR
3. h(x)zi, Vx eR*

4. j(x)=+/1+x

Pour g(x) vous utiliserez la formule du binéme de Newton :

n

(a+b)'= Z C:a”_kbk

k=0
avec
ok = n!
nk(n—k)!

oum!'=mx(m—1)x(m—2)x---x 3 x2x 1 la fonction factorielle.
Entrainement
Exercice 57

Déterminer les limites des fonctions suivantes :

1. lim,_; x*—3x+7

. x2-1
2. llmx_,1 i
3. lim x3—8x24+19x—12

x—1 x2—=3x+2

2
: x“=3x+2
4. lim,_,; ===
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Exercice 58

Soit la fonction f définie sur R. Etudier sa continuité sur R.

Exercice 59
Méme question pour :

Exercice 60
Méme question pour :

Auteurs du chapitre

%el/x Vx € ]J—00,—1/2]
flx)= ;2 Vx e]-1/2,1]
;iz—klnx Vx €]l,+00]

f= [T Vel
0 Vx €]—00,—-1]U[1,4+00]

1
f(x)=1b—a

0 sinon .

six €[a,b]

e Arnaud Bodin, Niels Borne, Laura Desideri, Benjamin Boutin,

e Frédéric Karamé
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Dérivée d’une
fonction d’une variable

Motivation

La dérivée revient a calculer des taux d’accroissement pour des variations infinitésimales. Cette approche
fonde l'essentiel des raisonnements en économie : c’est 'approche marginaliste.

Dans ce chapitre, nous allons donc définir ce qu’est la dérivée d’une fonction (a une variable) et établir les
formules des dérivées pour les fonctions usuelles.

Nous présenterons ensuite la dérivée comme l'outil permettant de trouver le sens de variation d’'une
fonction ainsi que les points extrémes (maximum ou mininum), qui sont trés importants pour résoudre
des problemes d’optimisation en économie ou statistique ou pour étudier le comportement d'une fonction.
Enfin, nous présenterons la dérivée comme un outil fondamental pour Uapproximation plus ou moins fine
de fonction au voisinage d’un point.

1. Dérivée

1.1. Dérivée en un point et fonction dérivée

Soit I un intervalle ouvert de R et f : I — R une fonction. Soit xy € I.

Définition 1.

f est si le taux d’accroissement M a une limite finie lorsque x tend vers x.
X — Xg
La limite s’appelle alors le de f en x, et est noté f’(x,). Ainsi
— +h)—
F'(xo) = lim f ()= f(xo) - lim f(xo+h)—f(xo)
X=Xo X —Xg h—0 h

Définition 2.
f est si f est dérivable en tout point x, € I. La fonction x — f’(x) est la

df

de f, elle se note f’ ou —.
dx

70 = L0 = 1im

flx+h)—f(x)
h

Exemple 1.
La fonction définie par f(x) = x2 est dérivable en tout point x, € R. En effet :

FO)—fxg)  X2=x3  (xx—x0)(x + xp)
X — Xy B X — X B X — X

=X+ x5 — 2x,.
X—Xgo
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On a méme montré que le nombre dérivé de f en x, est 2x,, autrement dit : f’(x) = 2x.

1.2. Interprétation géométrique : la tangente a la fonction

x)—f(x
La droite qui passe par les points distincts (x, f (xg)) et (x, f (x)) a pour coefficient directeur M.
X —Xo
A la limite (x tend vers x, ou le point M se rapproche de M, en suivant la fonction), le coefficient directeur

de la tangente est égal a f’(x,). Une équation de la au point (xg, f (xp)) est donc :

y = (x—x0)f"(x0) + f (x0)

\
~

1.3. Dérivée = continuité... mais la réciproque est fausse

Voici deux autres formulations de la dérivabilité de f en x.

Proposition 1.

+h)—
o f est dérivable en x si et seulement si lim flxo })1 fxo)

h—0

existe et est finie.

o f est dérivable en x si et seulement s’il existe £ € R (qui sera f’(x,)) et une fonction € : I — R telle que
e(x) —— 0 avec
X—Xq

f(x) = f(xo) + (x = x0)€ + (x — xg)e(xx).

Démonstration. Il s’agit juste de reformuler la définition de f’(x,). Par exemple, aprés division par x — X,
la deuxiéme écriture devient
f ) —f(xo)
0

X — X

=L+ e(x).

Proposition 2.

Soit I un intervalle ouvert, x, € I et soit f : I — R une fonction.
o Si f est dérivable en x alors f est continue en x.
o Si f est dérivable sur I alors f est continue sur I.

Démonstration. Supposons f dérivable en x, et montrons qu’elle est aussi continue en ce point. Voici une
démonstration concise : partant de I'écriture alternative donnée dans la proposition 1, nous écrivons

f(x) = f(xo) + (x —x0) + (x — xp)e(x).
—_—

-0 -0
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Donc f(x) — f(xy) lorsque x — x et ainsi f est continue en x;.

On reprend cette démonstration sans utiliser les limites mais uniquement la définition de continuité et
dérivabilité : fixons €’ > 0 et écrivons f(x) = f(xy) + (x — x)l + (x — xo)e(x) grice a la proposition 1, ol
e(x) - 0 et £ = f’(xy). Choisissons 6 > 0 de sorte qu’il vérifie tous les points suivants :
. 5<1,
e Olt] <€,
e si|x —xy| < & alors |e(x)| < € (Cest possible car e(x) — 0).
Alors I'égalité ci-dessus devient :
|£ Ge) = £ (x0)| = |(x = x0)€ + (xx — xp)e(x)]
< | —xol - [€] + |x — xo - [e(x)]
<6l + 66 pour|x—xy| <&
<

e +e' =2¢
Nous venons de prouver que si |x — x| < & alors | fl)—f (x0)| < 2¢€’, ce qui exprime exactement que f

est continue en Xg. O

La réciproque est fausse. Prenons par exemple, la fonction valeur absolue, qui est continue en 0 mais n’est
pas dérivable en 0.

y
y = Ix|

1

0 1 x

En effet, le taux d’accroissement de f (x) = |x| en xy, = 0 vérifie :
fG)—f0) x| |J+1 car|x|=xsix>0
x—0 x —1 carlx|=—xsix<0

Il y a bien une limite a droite (qui vaut +1), une limite a gauche (qui vaut —1) mais elles ne sont pas égales :
il n’y a pas de limite en 0. Ainsi f n’est pas dérivable en x = 0.

Cela se lit aussi sur le dessin, il y a une demi-tangente a droite, une demi-tangente a gauche, mais elles ont
des directions différentes.

Cela nous permet d’introduire la définition suivante.

Définition 3.

x)—f(x
f est si le taux d’accroissement M a une limite finie lorsque x
X —Xo
tend vers x . La limite s’appelle alors le de f en x; et est noté fg’(xo). Ainsi
F(xg) = lim f(x)—f(x0) - lim f(xo+h)—f(xo)
g0 X=Xy X — Xo h—0- h
x)—f(x
f est si le taux d’accroissement M a une limite finie lorsque x tend
X —Xg

+ . . 7 / . .
vers x, . La limite s’appelle alors le de f en x, et est noté f;(xq). Ainsi
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f1(x¢) = lim M: lim f(xo+h)—f(x0)

x—Xxg X — X h—0+ h

On dit qu’une fonction f est dérivable en x, ssi : fg’(xo) = fi(x0) = f'(x). On dit alors qu’elle est

continue en Xxy.

Mini-exercices.

1. Montrer que la fonction f(x) = x> est dérivable en tout point x, € R et que f'(x,) = 3x(2).

2. Montrer que la fonction f(x) = 4/x est dérivable en tout point x, > 0 et que f'(x,) = Zlﬁ
3. Montrer que la fonction f (x) = 4/x (qui est continue en x, = 0) n’est pas dérivable en x, = 0.
4

3 2

. Calculer '’équation de la tangente (T,) a la courbe d’équation y = x° — x* — x au point d’abscisse

X = 2. Calculer x; afin que la tangente (T;) au point d’abscisse x; soit parallele a (T).

5. Montrer que si une fonction f est paire et dérivable, alors f’ est une fonction impaire.

1.4. Opérations sur les dérivées

Proposition 3.
Soient f, g : I — R deux fonctions dérivables sur I. Alors pour tout x €1 :

(f +g) ()= f'(x)+g'(x)
(Af) (x) = Af'(x) oit A est un réel fixé
(f x &) (x) = f'(x)g(x) + f (x)g’(x)

(1) W =-2% G20

f f(x)?
(@ o=’ (")g("g)(;)fz(")g () (s g0 £ 0)
Remarque.

Il est plus facile de mémoriser les égalités de fonctions :

fF+g)=f"+g"  AfY=Af" (fxg)=f'g+fg

(F @

Démonstration. Prouvons par exemple (f x g) = f'g+ fg’.

Fixons x( € I. Nous allons réécrire le taux d’accroissement de f(x) x g(x) :

FO)Z00) — Fr)glee) _ F)—Flxg) o () —g(xo)
= g0+ E2EL

X — Xp X —Xg X — Xg

xTxo) f/(x0)g(xo) + &' (x0)f (o).

f(x0)

Ceci étant vrai pour tout x, € I la fonction f x g est dérivable sur I de dérivée f'g+ fg’.
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1.5. Dérivée de fonctions usuelles

Le tableau de gauche est un résumé des principales formules a connaitre, x est une variable. Le tableau de
droite est celui des compositions (voir paragraphe suivant), u représente une fonction x — u(x).

Fonction Dérivée Fonction Dérivée
x" nx™l (nez) u" nu™! (nez)
l _ 1 1 u’
2 - _=
X x u u2
‘/_ 11 1/_ 1 u/
X —— n =
2 J/x 2./u
x* ax®1 (aeR) u® av'u®*!  (aeR)
e e el u’et
1 7
u
Inx — Inu =
X u

Remarque.

» Notez que les formules pour x", %, v/ x et x* sont aussi des conséquences de la dérivée de I'exponentielle.

alnx

Par exemple x* =e et donc

1

i a _i alnxy _ ., — 1
dx(x )_dx(e )—axe

alnx _ a=x% = axa_l.
x
 Si vous devez dériver une fonction avec un exposant dépendant de x il faut absolument repasser a

la forme exponentielle. Par exemple si f (x) = 2* alors on réécrit d’abord f(x) = e*!*2

calculer f/(x)=1n2-e*"2 =1n2- 2%,

pour pouvoir

1.6. Composition de fonctions

Proposition 4.
Si f est dérivable en x et g est dérivable en f(x) alors g o f est dérivable en x de dérivée :

(gof) () =g (f(x))-F(x)

Démonstration. Faisons I’hypothese que f(x) # f(xg) pour x proche de x, (avec x # x;). La preuve est
alors similaire a celle ci-dessus pour le produit en écrivant cette fois :

gof(x)—gof(xo) _&(f(x)—=8(f(x0)) f(x)—F(xo)
X —Xg Fx)—f(xo) X —Xg

- g/(f(xo)) X f/(xo)-

X—Xg

Exemple 2.
Calculons la dérivée de In(1+x2). Nous avons g(x) = In(x) avec g’(x) = % et f(x) = 1+x?avec f/(x) = 2x.
Alors la dérivée de In(1 + x2) = g o f(x) est
2x
(g0f) )=/ (F())- f/(x) = g/(1+x?)-2x =

14 x2

Corollaire 1.
Soit I un intervalle ouvert. Soit f : I — J dérivable et bijective dont on note f~* : J — I la bijection
réciproque. Si f’ ne s‘annule pas sur I alors f ~* est dérivable et on a pour tout x € J :
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’ 1
e =—r—=
£(F1(0)
Remarque.
Il peut étre plus simple de retrouver la formule a chaque fois en dérivant I'égalité
F(gCo)=x

ot g = f ! est la bijection réciproque de f.
En effet a droite la dérivée de x est 1; a gauche la dérivée de f(g(x)) = f o g(x) est f’(g(x)) g’ (x).
Légalité f (g(x)) = x conduit donc a I'égalité des dérivées :

f'(g(0)-g'(x)=1.

Mais g = f ! donc
1

1Y — )
RS

1.7. Dérivées successives

Soit f : I — R une fonction dérivable et soit f’ sa dérivée. Si la fonction f’ : I — R est aussi dérivable on

note f” =(f') la de f. Plus généralement on note :
/
fO=f fO=f, fO=f" e foD=(s)
Sila £ existe on dit que f est

Théoréme 1 (Formule de Leibniz).

(n) _ _
(f'g) =f(")-g+C,1f(" 1).g(1)+...+CT’:f(n k).g(k)+...+f.g(n)

Autrement dit :
n
(n) _
(f -g) — E C,If f(n k).g(k)_
k=0

La démonstration est similaire a celle de la formule du bin6me de Newton et les coefficients que I'on obtient
sont les mémes.

Exemple 3.

o Pourn=1onretrouve (f-g)' =f'g+fg’.

e Pourn=2ona(f-g)' =f"g+2f'¢g"+1g".
Exemple 4.
Calculons les dérivées n-éme de exp(x)-(x2+1) pour tout n > 0. Notons f (x) = exp(x) alors f’(x) = exp(x),
F(x) = exp(x),..., f®(x) = exp(x). Notons g(x) = x? + 1 alors g’(x) = 2x, g”(x) = 2 et pour k > 3,
g®(x)=o0.
Appliquons la formule de Leibniz :

(F-8)™ ) = FM(x)- g()+CL D) gD (x)+C2 FID(x)- gP(x)+C3 FEI(x) g () +- -

On remplace f®)(x) = exp(x) et on sait que g (x) =0, g™ (x) =0,...Donc cette somme ne contient que
les trois premiers termes :

(f . g)(n)(x) =exp(x)-(x2+1)+ Ci exp(x)-2x + Cf exp(x) - 2.
Que I'on peut aussi écrire :

(f . g)(n)(x) =exp(x) - (x2 +2nx+n(n—1)+ 1).
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Mini-exercices.
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1. Calculer les dérivées des fonctions suivantes : f;(x) = xInx, f5(x) = sin %, f3(0)=VvV1++vV1+x2

1

falx) = (ln(lﬂ )%, fs(x) = x¥, fo(x) = arctan x + arctan .

1—x

2. On note A(f) = J}—/ Calculer A(f x g).

3. Soit f :]1,+00[—]—1, +oo[ définie par f(x) = x In(x)—x. Montrer que f est une bijection. Notons

g = f~ L. Calculer g(0) et g’(0).
4. Calculer les dérivées successives de f(x) =In(1 + x).

5. Calculer les dérivées successives de f(x) = In(x) - x3.

1.8. Regle de I’'Hospital

Cette regle peut étre utile quand le calcul de limites de fonctions rationnelles débouchent sur une forme

indéterminée de type 0/0 ou oo /0c0.

Théoréme 2 (Régle de 'Hospital).

Soient f, g : I — R deux fonctions dérivables et soit x, € I. On suppose que
* f(xo)=g(x0) =0,
« VxeI\{xe} g'(x)#0.

si lim 9

={ (€R) adalors lim

FG) _

x=xo g/(x) x=xo g(x)

l.

Exemple 5.
Calculer la limite en 1 de ln(’izn(;xx)_l) On vérifie que :
e f(X)=In(x*+x-1), f(1)=0, f'(x) = T,
« g(x)=In(x), g(1)=0, g'(x) =,
e Prenons I =]0,1], x, = 1, alors g’ ne sannule pas sur I \ {xy}.

fix)  2x+1 <y 2x% +x
g(x) x2+x-—1 Cx24x—1 xo1
Donc
f(x)
g(x) x-1

Mini-exercices.

1. Soit f(x) = 35—3 + ’(2—2 — 2x + 2. Etudier la fonction f. Tracer son graphe. Montrer que f admet un

minimum local et un maximum local.

2. Soit f(x) = v/x. Appliquer le théoréme des accroissements finis sur I'intervalle [100,101]. En déduire

Pencadrement 10 + % <4101 <10+ %.

3. Appliquer le théoreme des accroissements finis pour montrer que In(1 + x) —In(x) < % (pour tout

x > 0).

4. Soit f(x) = e*. Que donne I'inégalité des accroissements finis sur [0, x]?

5. Appliquer la regle de I'Hospital pour calculer les limites suivantes (quand x — 0) :

In(x+1)
—ﬁ .

x .
Q+x)—1"
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On peut également retrouver les résultats sur la croissance comparée des fonctions usuelles In, exp et
puissance.

2. Optimisation

Une application importante des dérivées de fonctions est de trouver les maximum ou minimum d’une
fonction parce que ce sont généralement la solution de nombreux problémes en économie : probléme du
consommateur (maximisation de I'utilité), probleme du producteur (minimisation des cofits, maximisation
du profit), probleme du statisticien (maximisation de la log-vraisemblance), probléme de I'’économetre
(minimisation de la somme des carrés des résidus), ...

Il faudra ainsi trouver les points pour lesquels la fonction dérivée premiére s’annule. L'étude du signe de la
dérivée d’ordre 2 permettra de déterminer la nature de la solution trouvée (maximum ou minimum, local
ou global).

2.1. Présentation

Définition 4.
Soit f : I — R une fonction définie sur un intervalle I.
X, est un de f si f'(xg) =0.

f admet un (resp. un ) s’il existe un intervalle ouvert J
contenant x, tel que

pourtout x €INJ  f(x) < f(xg) (resp. f(x) = f(xo).

f admet un si f admet un maximum local ou un minimum local en ce point.

y /\
maximum global

|
|
minimums locaux | maximums locaux
|
|
|

Dire que f a un maximum local en x, signifie que f(x,) est la plus grande des valeurs f(x) pour les x
proches de xy. On dit que f : I — R admet un en X, si pour toutes les autres valeurs
f(x),xe€l,ona f(x) < f(xg) (on ne regarde donc pas seulement les f(x) pour x proche de x,). Bien stir
un maximum global est aussi un maximum local, mais la réciproque est fausse.

Théoreme 3.
Soit I un intervalle ouvert et f : I — R une fonction dérivable. Si f admet un maximum local (ou un
minimum local) en x, alors f’(xy) = 0.
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En d’autres termes, un maximum local (ou un minimum local) x, est toujours un point critique. Géométri-
quement, au point (x, f (xy)) la tangente au graphe est horizontale.

On en revient donc a la question de trouver les zéros d’une fonction (ici pas la fonction d’intérét mais
sa dérivée).

Preuve du théoréme. Supposons que X soit un maximum local de f, soit donc J I'intervalle ouvert de la
définition contenant x, tel que pour tout x € I NJ on a f(x) < f(xg).

e Pourx €INJtel que x < xgona f(x)—f(xy) <0etx—xy<0donc J%{C(()x") > 0 et donc a la limite
: FO)—f(x0)
hmx_,xa TOO > 0.
e Pour x € INJ tel que x > xgona f(x)—f(xy) <0etx—xy,>0donc J%ﬁx") < 0 et donc a la limite
: (x)=f(xo)
lim,_, .+ J% <0.
Or f est dérivable en x donc
x)—f(x x)—f(x
i FOO=FO0) _ o FOI=FG0)
x—xy X — Xy x—xg X — Xg
La premiére limite est positive, la seconde est négative, la seule possibilité est que f’(x,) = 0. O

Exemple 6.
Etudions les extremums de la fonction f; définie par f;(x) = x® + Ax en fonction du paramétre A € R. La
dérivée est f)((x) =3x2+ A. Si x, est un extremum local, alors f}{(xo) =0.

e Si A > 0 alors f;(x) > 0 et ne s'annule jamais il n’y a pas de points critiques donc pas non plus
d’extremums. En anticipant sur la suite : f; est strictement croissante sur R.

e Si A =0 alors fi(x) = 3x2. Le seul point critique est x, = 0. Mais ce n’est ni un maximum local, ni un
minimum local. En effet si x < 0, fo(x) < 0= f,(0) et si x > 0, fo(x) > 0= £,(0).

* SiA<O0alors f,(x) = 3x2—|Al = 3(x + %I)(x - \/@) Il y a deux points critiques x; = — % et
Xy = +\/|7%|. En anticipant sur la suite : f;((x) > 0 sur ] — oo, x;[ et Jxy,+00[ et f/{(x) < 0sur Jxy,x50;
maintenant f, est croissante sur | — 00, x;[, puis décroissante sur ]x;,x5[, donc x; est un maximum

local. D’autre part f; est décroissante sur ]xy, x,[ puis croissante sur ]x,, +00[ donc x, est un minimum
local.
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X3

X1

A>0 A=0 A<0

Remarque.

1. La réciproque du théoréme 3 est fausse. Par exemple la fonction f : R — R, définie par f (x) = x3 vérifie
£7(0) = 0 mais x, = 0 n’est ni maximum local ni un minimum local.

2. Lintervalle du théoréme 3 est ouvert. Pour le cas d’un intervalle fermé, il faut faire attention aux
extrémités. Par exemple si f : [a, b] — R est une fonction dérivable qui admet un extremum en x, alors
on est dans I'une des situations suivantes :

* Xg=a,

o Xg= b,

e Xx( €Ja, b[ et dans ce cas on a bien f’(x,) = 0 par le théoréme 3.
Aux extrémités on ne peut rien dire pour f’(a) et f'(b), comme le montre les différents maximums sur
les dessins suivants.

o

|
a I

b — - - -~

=
<)
~
oS¢ --------

3. Pour déterminer maxp, ;1 f et ming, 5 f (ot f : [a, b] — R est une fonction dérivable) il faut comparer
les valeurs de f aux différents points critiques et en a et en b.

2.2. Théoreme de Rolle

Théoreme 4 (Théoréme de Rolle).
Soit f :[a,b] — R telle que

o f est continue sur [a, b],

o f est dérivable sur la, b[,

. fa)=f(b).

Alors il existe ¢ €]a, b[ tel que f'(c) = 0.
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fla)=f(b)

(opl

Qe

Interprétation géométrique : il existe au moins un point du graphe de f ot la tangente est horizontale.

Démonstration. Tout d’abord, si f est constante sur [a, b] alors n’importe quel ¢ €]a, b[ convient. Sinon
il existe x, € [a, b] tel que f(xy) # f (a). Supposons par exemple f (x,) > f(a). Alors f est continue sur
'intervalle fermé et borné [a, b], donc elle admet un maximum en un point ¢ € [a, b]. Mais f(c) > f(xg) >
f(a) donc ¢ # a. De méme comme f(a) = f(b) alors ¢ # b. Ainsi ¢ €]a, b[. En ¢, f est donc dérivable et
admet un maximum (local) donc f’(c) = 0. O

Mini-exercices.

1. Dessiner le graphe de fonctions vérifiant : f; admet deux minimums locaux et un maximum local ;
f> admet un minimum local qui n’est pas global et un maximum local qui est global ; f; admet une
infinité d’extremums locaux; f, n’admet aucun extremum local.

2. Calculer en quel point la fonction f(x) = ax? + bx + ¢ admet un extremum local.

3. Soit f :[0,2] — R une fonction deux fois dérivable telle que f(0) = f(1) = f(2) = 0. Montrer qu’il
existe ¢y, ¢, tels que f'(c;) = 0 et f'(c,) = 0. Montrer qu'il existe c5 tel que f”(c3) = 0.

4. Montrer que chacune des trois hypotheéses du théoréme de Rolle est nécessaire.
2.3. Théoréeme des accroissements finis

Théoréme 5 (Théoréme des accroissements finis).
Soit f :[a, b] — R une fonction continue sur [a, b] et dérivable sur ]a, b[. Il existe ¢ €]a, b[ tel que

fM)—f@=f'(c)(b—a)

Qe
o - -
°

Interprétation géométrique : il existe au moins un point du graphe de f ot la tangente est paralléle a
la droite (AB) ou A= (a, f(a)) et B= (b, f(b)).
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Démonstration. Posons { = f(b) f(a) et g(x) = f(x)—£L-(x—a). Alors g(a) = f(a), g(b) = f(b)— J%ﬁ(a)-
(b—a)=f(a).Parle theoreme de Rolle, il existe ¢ €]a, b[ tel que g’(c) =0. Or g’(x) = f'(x) —{. Ce qui
donne f'(c) = %. O

2.4. Sens de variation et dérivée

Cela provient du théoreme des accroissements finis et nous permet de caractériser le sens de variation d’'une
fonction.

Corollaire 2.
Soit f :[a,b] = R une fonction continue sur [a, b] et dérivable sur ]a, b[.

1. Vx €la,b[ f'(x)> & f estcroissante;

2. Vx €la,b[ f'(x)<0 < f estdécroissante;

3. Vx€la,b[ f'(x)=0 <= f estconstante;

4. Vx €la,b[ f'(x)>0 = f est strictement croissante;
5. Vx€la,b[ f/(x)<0 = f eststrictement décroissante.

Démonstration. Prouvons par exemple (1).

Sens =>. Supposons d’abord la dérivée positive. Soient x, y €]a, b[ avec x < y. Alors par le théoréme
des accroissements finis, il existe ¢ €]x, y[ tel que f(x)— f(y) = f'(c)(x —y). Mais f'(c) >0etx—y <0
donc f(x)— f(y) < 0. Cela implique que f(x) < f(y). Ceci étant vrai pour tout x, y alors f est croissante.

Sens <=. Réciproquement, supposons que f est croissante. Fixons x €]a, b[. Pour tout y > x nous avons
y—x>0etf(y)—f(x) >0, ainsi le taux d’accroissement vérifie }% > 0. A la limite, quand y — x,
ce taux d’accroissement tend vers la dérivée de f en x et donc f'(x) > 0. O]

Remarque.
La réciproque au point (4) (et aussi au (5)) est fausse. Par exemple la fonction x — x3 est strictement
croissante et pourtant sa dérivée s’annule en 0.

2.5. Curbature et dérivée seconde

Définition 5.
Une fonction f : E — R est sur E si et seulement si V(x,y) € E2 et YA €[0,1] :
fAx+(1—=A)y) <Af(x)+ (1 Af(y)

un point sur la corde

On parle de convexité stricte si I'inégalité est stricte.

f est convexe si et seulement si les cordes sont au dessus de la courbe représentative de f.

Définition 6.
Une fonction f : E — R est sur E si et seulement si V(x,y) € E2 et YA €[0,1] :
fAx+(A=A)y) 2 Af(x)+ (1 —=2)f(¥)

On parle de concavité stricte si 'inégalité est stricte.

f est concave si et seulement si les cordes sont en dessous de la courbe représentative de f.
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O ‘
fAx+A=p) |- 3 y
ME+A=DFO) | ‘ ;
B 3 | XX
X axt(-2)y y (G ()
Exemple de fonction concave Exemple de fonction convexe

Définition 7.

Une fonction f : E — R est convexe si et seulement si la dérivée f’ est une fonction croissante (en
supposant que la dérivée premiére existe), c’est-a-dire si et seulement si Yx € E, f”/(x) > 0 (en supposant
que la dérivée seconde existe).

Définition 8.

Une fonction f : E — R est concave si et seulement si la dérivée f’ est une fonction décroissante (en
supposant que la dérivée premiére existe), c’est-a-dire si et seulement si Vx € E, f”/(x) < 0 (en supposant
que la dérivée seconde existe).

2.6. Optima locaux et globaux

Pour résumer, une fonction f doit vérifier les propriétés suivantes pour afficher un maximum local en x; :

» Pour qu'un extremum local x, de f soit un maximum local, il faut que, dans un voisinage de x, la
fonction f soit croissante puis décroissante a partir de x.

« Sila dérivée f’ existe dans un voisinage de x,, pour qu'un extremum local x, de f soit un maximum
local, il faut que, dans un voisinage de x, la dérivée f’ soit positive puis négative a partir de x, (la
dérivée décroit).

« Sila dérivée seconde f” existe dans un voisinage de x,, pour qu'un extremum local x, de f soit un
maximum local, il faut que, dans un voisinage de x, la dérivée f” soit négative.

Plus formellement :
Définition 9.
Soit f une fonction de E dans R telle que les dérivées f’ et f” soient continues en x, € E. Alors :
1. f'(x¢) =0cet f”(xy) < 0= maximum local en x,,

2. f'(xg)=0cet f”’(xy) > 0= minimum local en x,.

Une condition plus forte pour déterminer des optima globaux : il faut et suffit que la fonction soit globalement
concave ou convexe sur E.

Définition 10.
Soit f une fonction de E dans R telle que les dérivées f’ et f” soient continues en x, € E. Alors :
1. f/(xg)=0etVx€E f”(x)<0= maximum global en x,,

2. f'(xg)=0etVx €E f”(x)>0= minimum global en x,.
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2.7. Inégalité des accroissements finis

Corollaire 3 (Inégalité des accroissements finis).
Soit f : I — R une fonction dérivable sur un intervalle I ouvert. S’il existe une constante M telle que pour
tout x € I, f’(x)| < M alors

Vx,yel  |[f(x)—f(y)| <Mlx—y]|

Démonstration. Fixons x,y € I, il existe alors ¢ €]x, y[ ou ]y, x[ tel que f(x)—f(y) = f'(c)(x —y) et
comme |f'(c)| < M alors |f(x)—f(y)| < MIx—yl. O

3. La dérivée pour I'approximation de fonctions

3.1. Approximation linéaire

On a vu lors de l'interprétation géométrique de la dérivée au point (xg, f (xp)) que f(x) pour se
réécrire :

¥y =f(x)=(x—x0)f"(x0) + f (x0)

Cette équation peut servir d’approximation linéaire de f (x) en x, puisque c’est une équation de droite.

Exemple 7.

Nous souhaitons calculer /1,01 ou du moins en trouver une valeur approchée. Comme 1,01 est proche de
1 et que +/1 =1 on se doute bien que 4/1,01 sera proche de 1. Peut-on étre plus précis ? Si I'on appelle f la
fonction définie par f(x) = 4/x, alors la fonction f est une fonction continue en x, = 1. La continuité nous
affirme que pour x suffisamment proche de x,, f (x) est proche de f(xy). Cela revient a dire que pour x au
voisinage de x, on approche f (x) par la constante f (xg).

Y
y=kx-1i+1
y=vx
=1
T y
7
0 "1 X

Nous pouvons faire mieux qu'approcher notre fonction par une droite horizontale ! Essayons avec une droite
quelconque. Quelle droite se rapproche le plus du graphe de f autour de x, ? Elle doit passer par le point
(x0, f (xg)) et doit « coller » le plus possible au graphe : c’est la tangente au graphe en x,. Une équation de
la tangente est

¥ = (x —x0)f"(x0) + f (x0)
ou f’(x,) désigne le nombre dérivé de f en x,.
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On sait que pour f(x) = /X, ona f'(x) = . Une équation de la tangente en x, = 1 est donc y =

(x— 1)% + 1. Et donc pour x proche de 1 on a f(x) ~(x— 1)5 + 1. Qu’est-ce que cela donne pour notre
calcul de 4/1,01? On pose x = 1,01 donc f(x)~ 1+ %(x —1)=1+ & = 1,005. Et C’est effectivement
une trés bonne de approximation de 4/0,01 = 1,00498.. .. En posant h = x — 1 on peut reformuler notre
approximationen : v1+h~1+ %h qui est valable pour h proche de 0.

3.2. Approximations a des ordres supérieurs : les développements limités

La section précédente se généralise pour obtenir des approximations de meilleure qualité.

La formule de Taylor-Young s’écrit :

T,(x) est le polynéme de Taylor d’ordre n

f//( ) 2 f(n)(a) n n
f)=f@+f(@x—-a)+——(x—a)+-+——(x—a)"+ (x —a)"e(x)
n! ——
R, (x) le reste, avec e(x):)O
Notation. Le terme (x —a)"e(x) ou e(x) S 0 est souvent abrégé en « » de (x —a)" et est noté
X

o((x—a)")
(x—a)r
notation qui simplifie les écritures, mais il faut toujours garder a I'esprit ce qu’elle signifie.

= 0. Il faut s’habituer a cette

o((x —a)™"). Donc o((x — a)™) est une fonction telle que lim,._,,

Cas particulier : Formule de Taylor-Young au voisinage de 0. On se raméne souvent au cas particulier ou
a =0, la formule de Taylor-Young s’écrit alors

2
f(x)=f(0)+f’(0)x+f”(0)’;—! + f(")(O) +x ne(x)

ou lim,_,ge(x)=0

Et avec la notation « petit o » cela donne :
2
F00) = F(0) + F(O)x + 5005 + -+ FO(O) 5 +0(x)

Exemple 8.
Soit f :]—1,+00[— R, x — In(1 + x); f est infiniment dérivable. Nous allons calculer les formules de
Taylor en O pour les premiers ordres.

Tous d’abord f(0) = 0. Ensuite f'(x) = 13 donc f/(0) = 1. Ensuite f”(x) = (1+x)2 donc f”(0) =
Puis f®)(x) = +2(1+x)3 donc f®)(0) = +2.
Voici donc les premiers polynémes de Taylor :
2 2 .3
T(x)=0 T)=x Be=x-7 LE)=x-ZF+7

Les formules de Taylor nous disent que les restes sont de plus en plus petits lorsque n croit. Sur le dessins
les graphes des polynémes T, Ty, To, T3 s'approchent de plus en plus du graphe de f. Attention ceci n’est
vrai qu’autour de 0.
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=1In(1+ x)

Mini-exercices.
1. Montrer que le polyndme de Taylor d’ordre n de In(1 + x) en O est

X2 3

n k n

X X X
T, (x)= E () 1 = — =  — — e (=)
= k 2 3 n

2. Calculer 'approximation de Taylor en O de la fonction e* pour différents ordres et calculer 'approxi-

mation de la constante d’Euler e.

3.3. DL des fonctions usuelles a I'origine

Les DL suivants en 0 proviennent de la formule de Taylor-Young.

Fonction DL
exXpx L3+ 37+ 3+ i+ xe(x)
In(1+ x) x—ﬁ+X_S_...+(_1)n—IX_+xn6(x)
(1+x)* 1+ ax + a(a 1)x2+ a(a 1). nga 1) +x"e(x)
141-x 1—x4+x?2=x3 4+ 4+ (=1)"x" + x"e(x)
1ix T+x+x2+-+x"+ x"(x)
1+x 1+3— éxz Foe (=)0 1-1-3-;-’&271_3))(,1 + x"e(x)
COS X 1—§—f+§ et (—1 (2n)'+x2n+1€(x)
sinx %_§+§_...+( 1)”(2;++1)'+x2n+2€(x)

3.4. Somme et produit de développements limités

On suppose que f et g sont deux fonctions qui admettent des DL en O a 'ordre n :

fxX)=cop+cx+--+cx"+x"e;(x) gx)=dy+dyx+--+dx"+x"ey(x)
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Proposition 5.
e f 4+ g admet un DL en O Uordre n qui est :
F+2))=f0)+g(x)=C(co+dp)+(c; +dy)x+--+(c, +d)x" + x"e(x).

e f x g admet un DL en 0 Uordre n qui est : (f x g)(x) = f(x) x g(x) = T,(x)+ x"e(x) ot T,(x) est le
polynéme (co+cyx + -+ ¢, x™") x (dg + dyx + -+ -+ d,x™) tronqué a Uordre n.

un polynéme a l'ordre n signifie que ’on conserve seulement les mondémes de degré < n.

Exemple 9.
Calculer le DL de cosx x v1+ x en 0 a lordre 2.

Avec I'habitude les calculs se font trés vite avec la notation « petit o » : dés qu'apparait un terme x2e;(x) ou

un terme x>,... on écrit juste o(x?) (ou si l'on préfere x2e(x)).

1 1 1
cosx X V1+x= (1 — Exz + o(xz)) X (1 + Ex — §x2 + o(xz)) on développe
1 1
=14 =x—=x*+o0(x?)

2 8
1, 2

—=x%+
5 o(x*)

+o(x?)

1 5
=1+-x—=x*+0(x?)
2 8

La notation «petit o» évite de devoir donner un nom a chaque fonction, en ne gardant que sa propriété
principale, qui est de décroitre vers O au moins a une certaine vitesse. Comme on le voit dans cet exemple,
o(x?) absorbe les éléments de méme ordre de grandeur ou plus petits que lui : 0(x?)— x> +3x20(x?) = o(x?).
Mais il faut bien comprendre que les différents o(x?) écrits ne correspondent pas & la méme fonction, ce qui
justifie que cette égalité ne soit pas fausse !

4. Exercices

TD

Exercice 61

Soit la fonction :
X

FO =17

Calculer f’(0) si elle existe.

Exercice 62
Calculer les dérivées des fonctions suivantes :

1. f(x)=In(x?+x*+1)

2. g(x)=x2%In(x?+x*+1)
3. h(x)=e*

4. j(x)=n(%32)

5. 1) =(1-%)(1+ %)
6. p(x)=x*
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Exercice 63
Trouver 'expression générale de la dérivée d’ordre n des fonctions suivantes :

1. f(x)=e%
2. g(x) =1

3. h(x) =In(x)
4. i(x) = =
5. j(x) =1z
6. k(x) = i

Exercice 64

Soient a, b et ¢ trois parameétres réels. Montrer qu’il existe x € [0, 1] tel que 4ax® + 3bx? + 2cx =
a+b+c.

Exercice 65
Une fonction continue sur E dont la dérivée s’annule jamais peut-elle étre périodique sur E ?

Exercice 66
Soit f une fonction dérivable de R, dans R. On suppose que f et f’ admettent des dérivées finies
en +00. Montrer que la limite de la dérivée doit étre nulle.

Exercice 67
Montrer qu’il est possible d’écrire la fonction exponentielle sous la forme :

oo n

X
e’ = —'
i=0 n

En déduire une approximation de la constante e.

Exercice 68
Montrer 1’égalité suivante au voisinage de O :

1 2
1—x:lZ=OJXI

Exercice 69
Faire une étude de la fonction (en identifiant les optima) :

flx)=—x>+x*+2x

Exercice 70
Faire une étude de la fonction (en identifiant les optima) :

2
Flx) = (Inx)

X

Exercice 71
Faire une étude de la fonction (en identifiant les optima) :
2
flx)=

X
xX2—2x+2
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Exercice 72
Montrer que si la fonction f(x) = ax® + bx? + cx + d admet deux extrema, alors 'un est un
maximum et I'autre un minimum.

Exercice 73
Soit le prix de vente unitaire du bien fixé a p.

1. Calculer le profit du producteur si son cofit total & produire est donné par C(q) = 60q + 2q>.

2. Pour quelle valeur de ¢ maximisera-t-il son profit ?

Exercice 74
La somme de deux nombres positifs est égale a 100. Trouver les couples de nombres tels que :

1. Le produit de ces nombres est maximal.

2. La somme des carrés est minimale.
Entrainement

Exercice 75
Soit
f R->R
x—= f(x)=x*+2x+4

La fonction f est :

A. continue sur [—1,2] et dérivable sur | —1,2[
B. continue et dérivable sur ]—1,2[
C. continue et dérivable sur [—1,2] .

Exercice 76

La fonction f définie sur R par :
1
e 2 six#0
xX)=
f@) {O six=0

est-elle :

A. continue et dérivable sur R
B. continue sur R et dérivable sur R*
C. continue et dérivable sur R*.

Exercice 77
La fonction f définie sur R\ {—1,1} par f(x) = In(x?>—1)? est continue et dérivable sur R\ {—1,1}.
Sa fonction dérivée f est définie par :

AZx B6x CBX

* x2—1 * x2—-1 tox2-1°
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Exercice 78
La fonction f définie sur R par

xln|x| six#0

f(x):{O six=0

est continue sur R et dérivable sur R*.

A. f est décroissante sur [—1/e,1/e]
B. f est croissante sur [—1/e, 0] et décroissante sur [0,1/e]
C. f est croissante sur R*.

Exercice 79
La fonction f définie sur R par f(x) =5 admet pour dérivée :

A —57% B.—5x—57* C.—In5x 57,

Exercice 80

Soit la fonction f définie sur R. Etudier sa continuité et sa dérivabilité sur R.

flx)= %el/x Vx € ]-00,—-1/2]
f)=3% Vx €1-1/2,1]
f(x):eiz+lnx Vxe]l,+00]

Exercice 81
La fonction f définie sur R par

e/ yx e ]-1,1[
flx)=
0 Vx €]—00,—1]U[1,4+00]

Exercice 82
Dresser le tableau de variation de la fonction f :

x3

flx)=

1—x

Exercice 83

4. EXERCICES

100

Soit la fonction f définie sur R par f(x) = In(x + v/ x2 + 1). Etudier son sens de variation. Définir

que c’est une bijection et calculer sa fonction réciproque.

Exercice 84

Supposons que la demande d’un bien soit une fonction du revenu : c(R) = 3+/R. Calculer I'élasticité

¢'(R)
c(R) °
R

revenu : €z =

Exercice 85

Déterminer les ensembles de définition et calculer les dérivées des fonctions suivantes :

1. f(x)=3x*—7x3+8x—2
2. f(x)=17x*— J/x
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3. f(x)=vx2+1

Exercice 86

Soit U la fonction d’utilité d’'un agent. On définit 'aversion absolue pour le risque par : A;(x) =

" a
_U (X) I : : . I 9 (X)
700 6t laversion relative comme : Ry (x) = —x ®
et U respectivement les dérivées premiere et seconde de la fonction U si elles existent. Calculer

les aversions absolues et relatives pour le risque pour les fonctions suivantes :

1. U(x)=ax+b

. . /
avec x le niveau de richesse de I'agent, U

2. U(x)=1n(x)
3. Ulx) = =x17
4. U(x)=—e ™

Exercice 87

Un agent économique cherche a maximiser son utilité en consommant un bien. Sa fonction d’utilité
est U(x) =In(x)—e*! avec x la quantité consommée. Pour quelle quantité consommée x* I'agent
maximise-t-il son utilité ?

Exercice 88
A l'aide de la formule de Taylor-Young, calculer un développement limité de :

1. f(x) = v1+ x alordre 3 au voisinage de 0.

2. g(x)=1In(1+ x) a l'ordre 3 au voisinage de O.

3. h(x) = v/1+ x + x2 a l'ordre 2 au voisinage de 0.

4. i(x) =1In(2 + 2x + x?) a l'ordre 2 au voisinage de 2.

Auteurs du chapitre
e Arnaud Bodin, Niels Borne, Laura Desideri, Guoting Chen, Marc Bourdon, Pascal Romon, Ben-
jamin Boutin,
« Stéphane Adjemian,
o Frédéric Karamé






Suites
numériques

Vidéo M partie 1. Premiéres définitions
Vidéo m partie 2. Limite

Vidéo M partie 3. Exemples remarquables
Vidéo m partie 4. Théorémes de convergence
Vidéo M partie 5. Suites récurrentes
Introduction

L'étude des suites numériques a pour objet la compréhension de 1’évolution de séquences de nombres (réels,
complexes, ...). Ceci permet de modéliser de nombreux phénomeénes de la vie quotidienne. Supposons
par exemple que I'on place une somme S a un taux annuel de 10%. Si S,, représente la somme que 'on
obtiendra aprés n années, on a :

So=S

S;=Sx1,1

Sy =8;x1,1=5x(1,1)?

S, =8x(1,1)"
Au bout de n = 10 ans, on possédera donc S;o = S x (1,1)!° & S x 2,59 (la somme de départ avec les
intéréts cumulés).

1. Définitions
1.1. Définition d’une suite

Définition 1.
Une est une application u : N — R.
Pour n € N, on note u(n) par u, et on 'appelle n-eme ou de la suite.

La suite est notée u, ou plus souvent (u,),cy Ou simplement (u,,). Il arrive fréquemment que I'on considére
des suites définies a partir d’un certain entier naturel n, plus grand que 0, on note alors (u,)p>n, -
Exemple 1.

o (+/n);>0 est la suite de termes : 0, 1, V2, /3,...

o ((—=1)"),>0 est la suite qui alterne +1, —1, +1, —1,...

e La suite (S,),~o de l'introduction définie par S, =S x (1,1)",


http://www.youtube.com/watch?v=eKWRb_wLczo
http://www.youtube.com/watch?v=253AEiNBvGw
http://www.youtube.com/watch?v=tvbsvRGI_38
http://www.youtube.com/watch?v=0W5KVpj769E
http://www.youtube.com/watch?v=hqPxTPEqDXw
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1 : 11 1
. (F)@r Les premiers termes sont 1, 3, 5, 75, - - -
Une est aussi souvent définie comme une fonction f de son terme précédent. Il faut se donner un

premier terme ou condition initiale pour la définir completement. On parle alors de

Définition 2.
Une est définie par son premier terme u et une fonction f : R — R permettant
d’établir la relation entre les termes de proche en proche :

upe€R et u,,=f(~u, pournz=O0.

Une suite récurrente d’ordre 1 est donc définie par deux éléments : un terme initial 1 et une relation de
récurrence u, .1 = f (u,).

Exemple 2.

(Vn)n>o définie par vy = 1, etla relation v,,; = v, +2 pour n € N. Les premiers termes sont 1, 3, 5, ... Chaque
nouveau terme est la somme du précédent et de la constante 2. C’est une suite récurrente d’ordre 1 aussi
appelée suite arithmétique.

Définition 3.

On peut généraliser la définition précédente si plusieurs termes précédents sont employés. Soit p ce
nombre de termes. Dans ce cas, on parle de suite récurrente d’ordre p. Il faut alors aussi définir p
conditions initiales.

Ug,---,Up1 ER et Upyp = f(Ungp1,Untp—2;--->Uy) pourn = o0.
Une suite récurrente d’ordre p est donc définie par p premiers termes u,...,uU,_; et une relation de
récurrence.
Exemple 3.

> définie par Fy = 1, F; = 1 et la relation = our n suite de Fibonacci). Les
F,)n>o définie par Fy = 1, F; = 1 et la relation F,,, = F,,; + F, p € N (suite de Fib ). L
premiers termes sont 1, 1, 2, 3, 5, 8, 13, ... Chaque terme est la somme des deux précédents. C’est une
suite récurrente d’ordre 2.

L'enjeu est souvent de passer de expression sous forme récurrente de la suite a son expression générale
pour pourvoir calculer directement le terme qui nous intéresse sans avoir a calculer tous les termes
précédents. Cela nous servira beaucoup pour étudier le comportement asymptotique de cette suite
(c’est-a-dire pour n trés grand).

1.2. Suite majorée, minorée, bornée

Définition 4.

Soit (u,),ey Une suite.
o (Up)nen est sidMeR VneN u, <M.
o (Up)nen est sidmeR VneN u,>m.
o (uy)ney €st si elle est majorée et minorée.
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1.3. Suite croissante, décroissante

Définition 5.
Soit (u,),ey une suite.
° (un)neN est
° (un)neN est
* (up)ney est
o (up)ney est
o (up)ney est
° (un)HEN eSt

Remarque.

siVneN u,q > u,.
siVneN  u, 1> u,.
siVneN u,.; <u,.
siVneN u,q <u,.
si elle est croissante ou décroissante.

105

si elle est strictement croissante ou strictement décroissante.

e (Uy)ney est croissante si et seulement si Yne N u,.; —u, > 0.
e Si(u,)ney €St une suite a termes strictement positifs, elle est croissante si et seulement si Yn € N

1.

Exemple 4.

 Voici un exemple d’'une suite croissante (mais pas strictement croissante) :

Uy

n

e La suite (S,),>¢ de l'introduction est strictement croissante car S,.1/S, =1,1> 1.
e La suite (u,),>; définie par u, = (—1)"/n pour n > 1, n’est ni croissante ni décroissante. Elle est majorée

par 1/2 (borne atteinte en n = 2) et minorée par —1 (borne atteinte en n = 1).

Un+l >
u, -~
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uT‘L

1 =4

1 |

3 ; M

+ +
1 2 3 4 i n
+

1
-14
—1 t m

» Lasuite (%)n>1 est une suite strictement décroissante. Elle est majorée par 1 (borne atteinte pour n = 1),
elle est minorée par 0 mais cette valeur n’est jamais atteinte.

Mini-exercices.
. n _ b _ 7 b
1. La suite (—n =) )n oy €St elle monotone ? Est-elle bornée ?
2. Est-il vrai qu'une suite croissante est minorée ? Majorée ?

. 7 . n Ve . Y . .
3. Soit x > 0 un réel. Montrer que la suite (%)n <y €st décroissante a partir d’'un certain rang.

1.4. Deux suites particuliéres : les suites arithmétique et géométrique
Définition 6 (Suite arithmétique).
Soit un réel a appelé raison. Soit (u,),cy la suite récurrente : u,, = u,_; + a. On peut la réécrire sous
forme générale comme : u, =ug+na, YyneN.
Définition 7 (Suite géométrique).

Soit un réel a appelé raison. Soit (u, ),y la suite récurrente : u,, = au,_,. On peut la réécrire sous forme
générale comme : u, = uya”, VneN.

Ces deux suites ont des propriétés particulieres qu’on étudiera et utilisera plus loin.

2. Limite et convergence

2.1. Définitions

Définition 8.
La suite (u,,),ey @ pour £ € R si pour tout € > 0, il existe un entier naturel N tel que sin > N
alors |u,—¢| < e :

YVe>0 INeN VneN (n=2N = |u,—{|<e€)

On dit aussi que la suite (u,,) ey . Autrement dit : u, est proche d’aussi prés que 'on veut de ¢, a
partir d’'un certain rang.
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un
{+e
/) . o4
. - L+t
¢ +
+
+ T
+ 1
N n
Définition 9.
1. La suite (u,)nen si:
VA>0 INeN VneN (n>N = u,>A)
2. La suite (u,)pen si:

YVA>0 INeN VneN (n>N = u, <-A)

Remarque.
1. On note lim,,_,, o 4, = £ ou parfois u, — ¢, et de méme pour une limite £oo.
2. lim,_, oo, =—00 & lim,_, oo —U, = +00.
3. On raccourcit souvent la phrase logique en :
YVe>0 INeN (n>=N = |u,—£| <e€).
Noter que N dépend de € et qu'on ne peut pas échanger 'ordre du « pour tout » et du « il existe ».

4. Linégalité |u, —£| < € signifie { — e < u,, < £ + €. On aurait aussi pu définir la limite par la phrase :
Ve>0 INeN (n>N = |u,—L| <€), ouon aremplacé I'inégalité large par I'inégalité stricte.

Définition 10.
Une suite (u,) ey €St si elle admet une limite finie. Elle est sinon (c’est-a-dire
soit la suite tend vers £00, soit elle n"admet pas de limite).

On va pouvoir parler de la limite, si elle existe, car il y a unicité de la limite :

Proposition 1.
Si une suite est convergente, sa limite est unique.

Démonstration. On procéde par 'absurde. Soit (u,),cy une suite convergente ayant deux limites £ # {’.
Choisissons € > 0 tel que € < @

Comme lim,,_,, o, u, = ¢, il existe N; tel que n > N; implique |u, —{| < e.

De méme lim,_, o, u, = £’, il existe N, tel que n > N, implique |u, —{’| < €.

Notons N = max(N;,N,), on a alors pour ce N :

luy—L€l<e et |uy—L]|<e
Donc [{ — 0| = |0 —uy +uy — 0| <€ —uy]| + luy —£’| d’apres linégalité triangulaire. On en tire |[£ —£’| <
€ +¢€ = 2e < |[¢ —{’|. On vient d’aboutir a I'inégalité [{ —¢’| < |¢ —{’| qui est impossible. Bilan : notre
hypothése de départ est fausse et donc £ = ¢’. O
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Exemple 5.

Soit un trajet de train au prix normal de 20 euros. On peut aussi acheter une carte d’abonnement de train
a 50 euros et on obtient ainsi chaque billet a 10 euros. La publicité affirme « 50% de réduction ». Qu’en
pensez-vous ?

Pour modéliser la situation en termes de suites, on pose pour un entier n > 1, u,, la somme payée au bout
de n achats au plein tarif et v,, celle au tarif réduit (y compris le prix de 'abonnement).

u, =20n
v, =10n+50
Soit w,, la réduction en pourcentages. On a donc :
u,—v 10n—50 5
w, = n n = =0,5—— —0,5
U, 20n 2n n—+o0o
Il faut donc une infinité de trajets pour s’approcher des 50% de réduction !
Wn
50%

+ + + +
Lo
+

2.2. Propriétés des limites

Proposition 2.
1. lim, oty =0 <= lim,_,,o(u,—{) =0 < lim,_, olu,—¢| =0,

2. 1m0 tty =€ = lim,_, , o0 U, = |4,

Proposition 3 (Opérations sur les limites).
Soient (u,)pey et (Vy)nen deux suites convergentes.

1. Silim,_,, o u, =4, ott £ €R, alors pour A € Ron alim,_, . Au, = AL.
2. Silim,_, oo, =L etlim,_, oo v, =10, 0t L,{’ €R, alors
. _ /
nl}inoo (U, +v,)=0+1¢

liEloo (U, xvy) =€ x4t

n—

3. Silim,_,, oo u, =£ ot { € R* =R\ {0} alors u,, # 0 pour n assez grand et lim,,_, , o, ui = %

Nous utilisons continuellement ces propriétés, le plus souvent sans nous en rendre compte.

Exemple 6.
Siu, — { avec { # %1, alors
1

u,(1—3u,)— o1

—{(1-30)—
n—+00

uz—1
Proposition 4 (Opérations sur les limites infinies).

Soient (u,)pen et (Va)nen deux suites telles que lim,,_,, oo v, = +09.
1. lim, % =0

2. Si (up)ney est minorée alors lim,_, , o, (u, +v,) = +00.

3. Si (u,)ney est minorée par un nombre A > 0 alors lim,,_, | o, (u,, X v,) = +00.
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I 4. Silim,_, oo U, =0 et u, > 0 pour n assez grand alors lim,,_, , o L — 1oo0.

Up

Exemple 7.
La suite (4/n) tend vers +00, donc la suite (%) tend vers 0.

Dans certaines situations, on est en présence d’une forme indéterminée du type "+00 — 00", "0 x 00", "22"

, ou ”g". On ne peut alors rien dire a priori sur la limite, il faut faire une étude au cas par cas.
Exemple 8.

1. «+00 — 00 » Cela signifie que si u,, —» +00 et v, - —oo il faut faire faire I’étude en fonction de chaque
suite pour déterminer lim(u,, + v,) comme le prouve les exemples suivants.

lim (e"—In(n))=+oo
n—+0o

Jm (n—n?)=—c0

lim ((n+l)—n) =0
n—+00 n

. 1
lim — xe"=+400
n—+oo lnn

2. «0x 00 »

) 1
lim —xlnn=0
n—+oo n

lim 1><(n+1)=1

n—+0o n

2.3. Exemples remarquables et utiles

Suite arithmétique

Proposition 5 (Suite arithmétique).
Soit une suite arithmétique de raison a et de premier terme u,. Sa représentation générale est u,, = uy+na.

1. Sia =0, sa limite est finie et égale a u.
2. Sia>0, alors lim,_,, o u, = +00.

3. Sia<0,alors lim,_, oo u, =—00.

Suite géométrique

Proposition 6 (Suite géométrique).
Soit une suite géométrique de raison a et de premier terme uy. Sa représentation générale est u, = a"uy.
1. Sia=1, onapourtoutn €N:u, =u,,.
2. Sia>1, alors lim,_,, o u, = +00.
3. Si—-1<a<1,alorslim, o u,=0.

4. Sia < —1, la suite (u,) ey diverge.

Démonstration.
1. est évident.

2. Ecrivons a =1+ b avec b > 0. Alors le bindme de Newton s’écrit a” = (1+b)" =1+nb+C?b*+--- +
C::bk +---+ b". Tous les termes sont positifs, donc pour tout entier naturel n on a : a" > 1+ nb. Or
lim,_,, o, (1+nb) =400 car b > 0. On en déduit que lim,_, o, a" = +00.
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3. Si a = 0, le résultat est clair. Sinon, on pose b = |%|. Alors b > 1 et d’aprés le point précédent
lim,_,, o, b" = +00. Comme pour tout entier naturelnona: |a|* = %, on en déduit que lim,,_,, o |a|" =
0, et donc aussi lim,,_,, o, a" = 0.

4. Supposons par 'absurde que la suite (u,,),cy converge vers le réel £. De a® > 1, on déduit que pour tout
entier naturel n, on a a®* > 1. En passant a la limite, il vient £ > 1. Comme de plus pour tout entier
naturel n on a a®*! < a < —1, il vient en passant de nouveau a la limite £ < —1. Mais comme on a déja
£ > 1, on obtient une contradiction, et donc (u,) ne converge pas.

O

Série géométrique

Proposition 7 (Série géométrique).
Soit a un réel, a # 1. En notantzzzoak =1+a+a’+---+a%ona:

1— an+1

n
St 1o
k=0 —a

Démonstration. En multipliant par 1—a on fait apparaitre une somme télescopique (presque tous les termes
s’annulent) :

1-a)(1+a+d®+--+ad")=(1+a+a®+--+a")—(a+®+ - +a"")=1—a"".

Remarque.
Siae]—1,1[ et (u,),ey est la suite de terme général : u, = ZZ:O ak, alors lim,,_, , oo U, = ﬁ De maniere
plus frappante, on peut écrire :
1
l1—a
Enfin, ces formules sont aussi valables sia € C\ {1}. Sia=1,alors 1+a+a*+---+a"=n+1.

l+at+ad®+a’+---=

Exemple 9.
L'exemple précédent avec a = % donne

1 1 1

I+-4+=+=+--=2.

2 4 8
Cette formule était difficilement concevable avant 'avenement du calcul infinitésimal et a été popularisée
sous le nom du paradoxe de Zénon. On tire une fleche a 2 metres d'une cible. Elle met un certain laps
de temps pour parcourir la moitié de la distance, a savoir un metre. Puis il lui faut encore du temps pour
parcourir la moitié de la distance restante, et de nouveau un certain temps pour la moitié de la distance
encore restante. On ajoute ainsi une infinité de durées non nulles, et Zénon en conclut que la fleche n’atteint
jamais sa cible!
L'explication est bien donnée par I'égalité ci-dessus : la somme d’une infinité de termes peut bien étre une
valeur finie! ! Par exemple si la fleche va a une vitesse de 1 m/s, alors elle parcourt la premiére moitié en 1s,
le moitié de la distance restante en % s, etc. Elle parcourt bien toute la distance en 1 + % + 41‘ + % +ooe=2
secondes !

” >

AN

~
AN

NI
~

*"“I
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3. Théoréme de convergence

3.1. Toute suite convergente est bornée

Revenons sur une propriété importante que nous avons déja démontrée dans la section sur les limites.

Proposition 8.
Toute suite convergente est bornée.

La réciproque est fausse mais nous allons ajouter une hypothese supplémentaire pour obtenir des résultats.

3.2. Suite monotone

Théoréme 1.

Toute suite croissante et majorée est convergente.

Remarque.
Et aussi :
» Toute suite décroissante et minorée est convergente.
» Une suite croissante et qui n’est pas majorée tend vers +00.
o Une suite décroissante et qui n’est pas minorée tend vers —oo.

Démonstration du théoréme 1. Notons A= {u,|n € N} C R. Comme la suite (u,),cy est majorée, disons par
le réel M, 'ensemble A est majoré par M, et de plus il est non vide. Donc d’apreés le théoréme R4 du chapitre
sur les réels, 'ensemble A admet une borne supérieure : notons ¢ = supA. Montrons que lim,_,, o, u, =£.
Soit € > 0. Par la caractérisation de la borne supérieure, il existe un élément uy de Atel que £ —e < uy < £.
Mais alors pourn > Nonaf—e <uy <u, </{,etdonc |u,—{| <e. O

3.3. Suites adjacentes
Définition 11.
Les suites (u,,)pen €t (Vy)nen sont dites si
1. (up)ney est croissante et (v,),en €st décroissante,
2. pourtoutn > 0,on au, <v,,

3. lim,_; 0o (v, —u,) =0.

Théoréme 2.

Si les suites (U, ) ey et (Vy)nen SOnt adjacentes,
elles convergent vers la méme limite.

Il y a donc deux résultats dans ce théoréme : la convergence de (u,) et (v,) et en plus I'égalité des limites.
Les termes de la suites sont ordonnées ainsi :

uogulguzg...gung ...... <vn<...<v2<v1<1}0
Démonstration.

 La suite (u,),ey €st croissante et majorée par v, donc elle converge vers une limite £.
o La suite (v,)pey est décroissante et minorée par u,, donc elle converge vers une limite ¢.
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e Donc ¢/ —{ =1lim,_,,c0(v,—u,) =0, dout =¢.

Exemple 10.
Reprenons 'exemple de {(2). Soient (u,,) et (v,,) les deux suites définies pour n > 1 par

u—zn:l—1+i+l+ +i et v,=u +i
" k2 22 32 n2 T 41

Montrons que (u,) et (v,) sont deux suites adjacentes :

1.(a) (u,) est croissante car u, ; —u, = ﬁ > 0.

(b) (v,) est décroissante :
2 _ nk2+2(n+1)*—2(n+1)(n+2) _

_ 1 2 —n
Vil “Vn = Gz T ez ol (F2) (1) = roeie <0

2. Pourtoutn=>1:v,—u, = % > 0, donc u, < v,.

3. Enfin comme v, —u, = 35 alors lim(v,, —u,) = 0.

Les suites (u,,) et (v,) sont deux suites adjacentes, elles convergent donc vers une méme limite finie £. Nous
avons en plus 'encadrement u,, < £ < v, pour tout n > 1. Ceci fournit des approximations de la limite : par
exemple pour n = 3, 1+}‘+%<£ < 1+%+%+%donc 1,3611...<£<1,8611...

3.4. Suites encadrées

Proposition 9.
1. Soient (u,)nen €t (Vp)nen deux suites convergentes telles que : Yn € N, u,, < v,,. Alors

lim u, < lim v,
n—+00 n—+00

2. Soient (Up)nen €t (Vpnen deux suites telles que lim, ,,ou, = +00 et Yn € N, v, > u,. Alors
lim, 4 0o vV = +00.
3. Théoréme des « gendarmes » : si (U )nen> (Vnnen €t (W, )nen SONt trois suites telles que
VneN u,<v,<w,

et lim,_, oo U, = lim,_,, oo W, = £, alors la suite (v,,),ex est convergente et lim,_, , oo v, = £.

Up, Vp, Wy

e--

Remarque.
1. Soit (u,),en une suite convergente telle que : Yn € N, u,, > 0. Alors lim,_,, o, u, > 0.

2. Attention, si (u,),ey €St une suite convergente telle que : Yn € N, u,, > 0, on ne peut affirmer que la
limite est strictement positive mais seulement que lim,,_, , o, u,, = 0. Par exemple la suite (u,),cy donnée

par u, = n—_lH est a termes strictement positifs, mais converge vers zéro.

Démonstration de la proposition 9.
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1. En posant w, = v, —u,, on se rameéne a montrer que si une suite (w,),cy Vérifie Yn € N, w, > 0 et
converge, alors lim,,_,, ., W, = 0. On procéde par 'absurde en supposant que £ =lim,_,, o w, <0. En
prenant € = |%| dans la définition de limite (définition 8), on obtient qu’il existe un entier naturel N tel
que n > N implique |w, —{| < e = —%. En particulier on a pour n > N que w,, < { — % = % < 0, une
contradiction.

(+5=

N

~ NS

2. Laissé en exercice.

3. En soustrayant la suite (u,),cy, On Se raméne a montrer '’énoncé suivant : si (u,),ey €t (Vy)pen SONt
deux suites telles que : Yne N, 0 < u, < v, etlim,_,, o, v, =0, alors (u,) converge et lim,_,, o, u,, = 0.
Soit € > 0 et N un entier naturel tel que n > N implique |v,| < €. Comme |u,| =u, < Vv, = |v,], on a
donc : n > N implique |u,| < €. On a bien montré que lim,,_,, , u,, = 0.

O

Mini-exercices.

2n+1
n+2 *

lim,,_,; o0 U, = 2. Trouver explicitement un rang a partir duquel 1,999 < u, < 2,001.

1. Soit (u,),ey la suite définie par u, = En utilisant la définition de la limite montrer que

2. La suite (u,) ey de terme général (—1)"e™ admet-elle une limite ? Et la suite de terme général ui ?

n!

3. Déterminer la limite de la suite (u,),>; de terme général vn+1— 4/n. Idem avec w, = 5.

4. Utiliser le théoréme des « gendarmes » pour trouver la limite de la suite (u,),cy de terme général

— ="
Up =2+ 1+n+n2

Upiq

3.5. Suites telles que <{<1

n

Théoréeme 3.
Soit (u,)nen une suite de réels non nuls. On suppose qu’il existe un réel £ tel que pour tout entier naturel n
(ou seulement a partir d’'un certain rang) on ait :

Unt1
Up

<fl<1.

Alors lim,,_, ;oo U, =0.

Un+l
uTl

dans le cas ou cette propriété n’est vraie qu'a partir d’un certain rang n’est pas trés différente). On écrit
u u; uy; u u
Tl 2 B

Démonstration. On suppose que la propriété < { < 1 est vraie pour tout entier naturel n (la preuve

Up Up Uy U Up—1
ce dont on déduit
lln
up
et donc |u,| < |upl€™. Comme £ < 1, on a lim,_,, o, £" = 0. On conclut que lim,_,, o, u, = 0. O

<ExEXLx-oxx{=L"
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Corollaire 1.
Soit (u,),en une suite de réels non nuls.

.1 u .
Silim,_, 00 1:1 =0, alors lim,,_,, co u,, = 0.

Exemple 11.
Soit a € R. Alors lim,,_, | o ‘T’l—',l =0.

Démonstration. Si a = 0, le résultat est évident. Supposons a # 0, et posons u,, = (:TT Alors

Uy a™t o nl a

u, _(n+1)!.ﬁ_n+1'

Upiq _ . : —
Zn =0 (car a est fixe), on a lim,,_,, o, u, = 0.

Avec le théoréme, en posantn > N > 2|al on a :

Avec le corollaire : comme lim

u a a a 1
wr|_ ol _ lal _lal _1_, .
u, n+l N+1 N 2
et donc lim,_,, o, u,, = 0. O
Remarque.
1. Avecles notations du théoreme, si on a pour tout entier naturel n a partir d'un certain rang : L‘Z—“ >{>1,
n

alors la suite (u, ) ey diverge. En effet, il suffit d’appliquer le théoreme a la suite de terme général |ul—|
pour voir que lim,,_, | o |u,| = +00.

2. Toujours avec les notations du théoréme, si £ = 1 on ne peut rien dire.
Exemple 12.
Pour un nombre réel a, a > 0, calculer lim,_,, o, va.

On va montrer que lim,,_,, o, /@ = 1. Si a = 1, cest clair. Supposons a > 1. Ecrivons a = 1 + h, avec h > 0.
Comme

h\" h
1+—|] 214+n-=1+h=a
n n
(voir la preuve de la proposition 6) on a en appliquant la fonction racine n-éme, /- :
h
1+=>+va>1.
n

On peut conclure grace au théoréme « des gendarmes » que lim,,_, o, +/a = 1. Enfin, si a < 1, on applique
le cas précédent a b = % > 1.

4. Suites récurrentes d’ordre 1 (facultatif)

Les suites récurrentes définies par une fonction forment une catégorie essentielle de suites.

4.1. Point(s) fixe(s)
Soit f : R — R une fonction. Une est définie par son premier terme et une relation
permettant de calculer les termes de proche en proche :

upeR et u,,=sf(~, pournz=O0.

Une suite récurrente est donc définie par deux données : un terme initial uy, et une relation de récurrence
Up41 = f (u,). La suite s’écrit ainsi :

ug, uy=f(up), uy=f(u)=rFf(f(up)), us=f(uy)=r{(up))),...
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Le comportement d’une telle suite peut tres vite devenir complexe.

Exemple 13.
Soit f(x) =1+ 4/x. Fixons uy = 2 et définissons pour n > 0 : u,,; = f (u,). Cest-a-dire u,,; = 1+ /1.
Alors les premiers termes de la suite sont :

2, 1442, 1+V1++v2, 1+4V1+V1++V2, 1+\/1+V1+\/1+«/§,...

Une suite récurrente donnée n’est pas forcément convergente. Lorsqu’elle admet une limite, 'ensemble des

valeurs possibles est restreint par le résultat essentiel suivant.

Proposition 10.
Si f est une fonction continue et la suite récurrente (u, ) converge vers £, alors £ est une solution de l’équation :

f)=t¢

Si on arrive a montrer que la limite existe, cette proposition affirme qu’elle est a chercher parmi les solutions
de I'équation f(£) ={.

f 1 |

Une valeur £, vérifiant f (¢) = { est un de f. La preuve est trés simple et utilise essentiellement la
continuité de la fonction f :

Démonstration. Lorsque n — 4090, u,, — { et donc aussi u,,; — £{. Comme u,, — { et que f est continue
alors la suite (f (u,)) — f(¢). Larelation u,; = f (u,,) devient a la limite (lorsque n — +00) : £ = f(£). O

Nous allons étudier en détail deux cas particuliers, celui ou la fonction est croissante, puis celui ou la
fonction est décroissante.

4.2. Cas d’une fonction croissante

Commencons par remarquer que pour une fonction croissante, le comportement de la suite (u, ) définie par
récurrence est assez simple :

e Siu; > ug alors (u,) est croissante.

e Siu; <ug alors (u,) est décroissante.
La preuve est facile par récurrence : par exemple si u; > u, alors comme f est croissante on a uy = f(u;) >
f(ug) = u;. Partant de uy > u; on en déduit us > us,,...

Voici le résultat principal :

Proposition 11.
Si f :[a,b] — [a, b] une fonction continue et croissante, alors quelque soit u, € [a, b], la suite récurrente
(u,,) est monotone et converge vers £ € [a, b] vérifiant | f(£) ={ |
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Il y a une hypothése importante qui est un peu cachée : f va de lintervalle [a, b] dans lui-méme. Dans la
pratique, pour appliquer cette proposition, il faut commencer par choisir [a, b] et vérifier que f([a, b]) C

[a,b].

f(la, b))

Démonstration. La preuve est une conséquence des résultats précédents. Par exemple si u; > ug alors la
suite (u,) est croissante, comme par ailleurs elle est majorée par b, elle converge vers un réel £. Par la
proposition 10, on a f(£) =£. Si u; < ug, (u,) est une décroissante et minorée par a, et la conclusion est la
méme. O

Exemple 14.
Soit f : R — R définie par f(x) = %r(x2 —1)(x —2) + x et uy € [0,2]. Etudions la suite (u,) définie par
récurrence : U, = f(u,) (pour tout n > 0).

1. Etude de f

(a) f est continue sur R.

(b) f est dérivable sur R et f’(x) > 0.

(c) Sur lintervalle [0,2], f est strictement croissante.

(d) Et comme f(0) = 3 et f(2) = 2 alors f([0,2]) c [0,2].
2. Graphe de f

f
Yy
(ry=x)
20
1 Lo
Ug up U 1 TRTA 2 X
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Voici comment tracer la suite : on trace le graphe de f et la bissectrice (y = x). On part d’une valeur u,
(en rouge) sur 'axe des abscisses, la valeur u; = f (ug) se lit sur 'axe des ordonnées, mais on reporte la
valeur de u; sur I'axe des abscisses par symétrie par rapport a la bissectrice. On recommence : u, = f(u;)
se lit sur 'axe des ordonnées et on le reporte sur 'axe des abscisses, etc. On obtient ainsi une sorte
d’escalier, et graphiquement on conjecture que la suite est croissante et tend vers 1. Si on part d’'une autre
valeur initiale u;, (en vert), c’est le méme principe, mais cette fois on obtient un escalier qui descend.

3. Calcul des points fixes.

Cherchons les valeurs x qui vérifient (f (x) = x), autrement dit (f (x) —x = 0), mais
1
fxX)—x= Z(xz—l)(x—Z) €))

Donc les points fixes sont les {—1,1,2}. La limite de (u,,) est donc a chercher parmi ces 3 valeurs.

4. Premier cas : ug =1 ou ug = 2.

Alors u; = f(up) = ug et par récurrence la suite (u,,) est constante (et converge donc vers ug).

5. Deuxiéme cas : 0 < uy < 1.

o Comme f([0,1]) c [0,1], la fonction f se restreint sur I'intervalle [0, 1] en une fonction f : [0,1] —
[0,1].

e De plus sur [0,1], f(x)—x > 0. Cela se déduit de I’étude de f ou directement de I'expression (1).

e Pour uy €[0,1[, u; = f(ug) > uy d’apres le point précédent. Comme f est croissante, par récurrence,
comme on I'a vu, la suite (u,,) est croissante.

 La suite (u,,) est croissante et majorée par 1, donc elle converge. Notons £ sa limite.

o D’une part £ doit étre un point fixe de f : f({) =£. Donc { € {—1,1,2}.

» D’autre part la suite (u,,) étant croissante avec uy > 0 et majorée par 1, donc £ € [0, 1].

 Conclusion : si 0 < uy < 1 alors (u,) converge vers £ = 1.

6. Troisieme cas : 1 <uy < 2.

La fonction f se restreint en f :[1,2] — [1,2]. Sur l'intervalle [1,2], f est croissante mais cette fois
f(x) < x.Donc u; < uy, et la suite (u,) est décroissante. La suite (u,) étant minorée par 1, elle converge.
Si on note £ sa limite alors d’une part f ({) = £, donc £ € {—1, 1,2}, et d’autre part £ € [1,2[. Conclusion :
(u,,) converge vers £ = 1.

Le graphe de f joue un rdle tres important, il faut le tracer méme si on ne le demande pas explicitement. Il
permet de se faire une idée trés précise du comportement de la suite : Est-elle croissante ? Est-elle positive ?
Semble-t-elle converger? Vers quelle limite ? Ces indications sont essentielles pour savoir ce qu’il faut
montrer lors de I'étude de la suite.

4.3. Cas d’une fonction décroissante

Proposition 12.
Soit f : [a,b] — [a, b] une fonction continue et décroissante. Soit u, € [a, b] et la suite récurrente (u,,)
définie par u, ., = f (u,). Alors :

o La sous-suite (u,,) converge vers une limite { vérifiant f o f (£) = L.

o La sous-suite (uy, 1) converge vers une limite £’ vérifiant f o f(£') = ¢’

Il se peut (ou pas!) que £ ={’.

Démonstration. La preuve se déduit du cas croissant. La fonction f étant décroissante, la fonction f o f est
croissante. Et on applique la proposition 11 a la fonction f o f et a la sous-suite (u,, ) définie par récurrence
uy = f o f(up), ug = f o f(us),...

De méme en partant de u; et us = f o f(uy),... O



SUITES NUMERIQUES 4. SUITES RECURRENTES D’ORDRE 1 (FACULTATIF) 118
Exemple 15.

1 1
f(x):]--i_;: u0>0) Upy1 = f(u)_1+_

n

1. Etude de f. La fonction f :]0,+00[—]0, +0o[ est une fonction continue et strictement décroissante.
2. Graphe de f.

Uy 1 Uy Us 2 uq X

Le principe pour tracer la suite est le méme qu'auparavant : on place uy, on trace u; = f (ug) sur 'axe des
ordonnées et on le reporte par symétrie sur 'axe des abscisses,... On obtient ainsi une sorte d’escargot,
et graphiquement on conjecture que la suite converge vers le point fixe de f. En plus on note que la
suite des termes de rang pair semble une suite croissante, alors que la suite des termes de rang impair
semble décroissante.

3. Points fixes de f o f.

1 X 2x +1
of(x)= x))=fl1+—)= T=1+ =
fof)=f(ft)=F(1+-) e
Donc
2x +1 1-— 1+
fof(x)=x &= Xy = x2—x—1=0 < x { [ ‘/_}
x+1
Comme la limite doit étre positive, le seul point fixe a considérer est £ = 2

Attention! Il y a un unique point fixe, mais on ne peut pas conclure a ce stade car f est définie sur
10, +00[ qui n’est pas un intervalle compact.

4. Premier cas 0 <ug < /{ = —‘/_

Alors, u; = f(ug) > f(£) = K ; et par une étude de f o f(x)— x, on obtient que : uy = f o f(ugy) > u
2 fof(u)=us.

Comme u, > ug et f o f est croissante, la suite (u,,) est croissante. De méme u; < u;, donc la suite

(ugp41) est décroissante. De plus comme u, < uq, en appliquant f un nombre pair de fois, on obtient

que u,, < Uy,,1- La situation est donc la suivante :

Upg S Uy S+ SUyy S  SUgpy S " S U3 S U

La suite (u,,,) est croissante et majorée par u;, donc elle converge. Sa limite ne peut étre que 'unique
point fixe de f o f :€=%§.
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La suite (uy,41) est décroissante et minorée par u,, donc elle converge aussi vers { = %
On en conclut que la suite (u,) converge vers £ = %
5. Deuxiéme cas uy > £ = 1+2‘/§.
On montre de la méme facon que (u,,) est décroissante et converge vers 1+2‘/§, et que (ug,.1) est

croissante et converge aussi vers %ﬁ

Mini-exercices.

1. Soit f(x) = éxS +1,ug=0etpourn>0:u,,; = f(u,). Etudier en détail la suite (u,,) : (a) montrer
que u, > 0; (b) étudier et tracer le graphe de f ; (c) tracer les premiers termes de (u,,); (d) montrer
que (u,,) est croissante ; (e) étudier la fonction g(x) = f (x)—x; (f) montrer que f admet deux points
fixes sur R,, 0 < £ < ¢’; (g) montrer que f([0,£]) C [0,£]; (h) en déduire que (u,) converge vers .

2. Soit f(x) =1+ /X, uy=2etpourn >0 :u,.; = f (u,). Etudier en détail la suite (u,).
3. Soit (u,),ey la suite définie par : ug € [0,1] et u, . ; =u, — uﬁ. Etudier en détail la suite (u,,).

4. Etudier la suite définie par ug =4 et u,.; = ﬁ.
n

5. Exercices

TD

Exercice 89

Soit la suite de terme général u, = u,_; +1 pour n > 1, avec la condition initiale u; = 1. (1)
Donner une expression de u, en fonction du rang n. (2) Soit la suite v, = 2?21 u; pour n > 1.
Quelle est la condition initiale de cette suite ? Déterminer v,,.

Exercice 90

Soit la suite de terme général u, = pu,_, pour n > 1 avec la condition initiale uy =1et 0 < p < 1.
(1) Donner une expression de u, en fonction du rang n et de sa condition initiale. (2) Montrer
que u, tend vers O quand n tend vers l'infini en établissant que 'on peut rendre arbitrairement
petite la distance entre u, et 0 a partir du moment ou n est assez grand. (3) Dans le cas ot la suite
admet une limite, combien d’itérations faut-il pour réduire de moitié la distance a la limite ? (4)
Montrer que la suite diverge si p > 1.

Exercice 91
Soit la suite de terme général u, = ”—:2 Montrer que cette suite a pour limite 1.

Exercice 92
Quel est le comportement asymptotique de la suite de terme général u,, = —n.

Exercice 93

_1)n+1
Soit la suite de terme général u, = &2

n2

. Montrer que cette suite admet O pour limite.

Exercice 94
Soit la suite (u,,) € Q définie par :
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avec u; = 2. (1) Donner les premiers termes de la suite. (2) Montrer que la suite est inférieurement
bornée par V2. (3) Calculer le point fixe de la suite. (4) Montrer que la suite est monotone
décroissante. (5) Conclure sur le comportement asymptotique, la limite de la suite est-elle dans

Q? (6) Montrer que u,,; — V2 < 3 (u, — v2) et en déduire que u, — v2 < %
Entrainement
Exercice 95

Pour la suite géométrique u de raison v/2 et u, = 5, le terme u, est égal a :

A.80+v2 B.160 C. 80.

Exercice 96
La suite u est telle que : VneN,uy,=1etu,,; =2"u,.u, estégala:

(n—1) (n+1)
2 n n2 2 n n2

A.2" B.2

Exercice 97
VneN*, u,=1+(0.1)+---+(0.1)". La suite u, converge vers :

A.10/9 B.9/10 C.11/10.

Exercice 98
La suite u est géométrique, de raison q > O et de premier terme u, > 0. La suite v =1lnu est :

A. géométrique de raison e? B. arithmétique de raison g C. arithmétique de raison Ing.

Exercice 99
Soit la suite u définie sur n € N par :
S5 1

Upyo = Zun-rl - Zun
uO == 1, ul =2
1. Soit la suite v de terme général v, = u,,; —u,. Montrer que v est une suite géométrique.
Calculer v, en fonction de n.
2. En déduire u, en fonction de n. La suite u est-elle convergente ?

3. Déterminer le rang p a partir duquel :

u ——|<107°

"3

Exercice 100
Un agent place un montant de 2 000 euros au taux de 5% l'an. De plus, il ajoute 500 euros tous
les ans.

1. Ecrire 'équation de récurrence correspondante.
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2. Lécrire sous forme générale.
3. Quelle est la condition initiale ?
4. Quel est le montant a I'issue de 10 ans?

5. Au bout de combien de temps le capital double-t-il ?

Exercice 101
Sur un marché la demande pour un bien a la date t est linéaire par rapport au prix du bien :

D(p,): q.=a—bp,
ol a et b sont deux parametres réels strictement positifs. Sur le méme marché, la quantité offerte
ala date t dépend du prixaladatet —1:

S(pe—1): ¢ =c+d p,y
ol c et d sont deux parameétres réels positifs. Les offreurs utilisent le prix de la date précédente
pour anticiper le prix aujourd’hui : on dit qu’ils ont des anticipations naives.

1. Montrer que la quantité offerte est égale a la quantité demandée si et seulement si le prix a la
date t est donné par :
a—c d
b b p[—].

b=
2. Calculer le point fixe p* (ou état stationnaire) de cette équation de récurrence pour le prix.
Quelle hypothese faut-il poser sur les parametres pour que ce prix ait un sens?
3. Montrer que p* est le prix d’équilibre sur ce marché. Calculer la quantité échangée a 1’équilibre.
4. Calculer le prix a la t.

5. Donner la condition sous laquelle le prix converge vers p*. Commenter. La convergence est-elle
monotone ?

Exercice 102
Sur un marché, l'offre et la demande sont caractérisées par :

S(p): q=1+p
D(p): g=2—p
1. Calculer le prix d’équilibre p* et les quantités échangées a I'équilibre, g*.
2. Supposons que le marché ne soit pas équilibré. On admet que dans une situation de déséquilibre,

le prix augmente la demande est supérieure a l'offre (demande excédentaire positive). Plus
formellement on admet que le prix est mis a jour a 'aide de la récurrence suivante :

Pes1 =P+ a(D(p,)—S(p,))
Déterminer le point fixe de cette récurrence, c’est-a-dire le prix p tel que p = p+a(D(p)—S(p)).
Comparer p et p*.

3. Supposons que le prix initial p; soit différent de p. Exprimer p, en fonction de p, et a.
4. Montrer que la chronique de prix converge de facon monotone vers p si 0 < a < %

5. Quelles sont les prédictions du modele si a est en dehors de cet intervalle ?

Auteurs du chapitre
» Arnaud Bodin, Niels Borne, Laura Desideri, Benjamin Boutin
o Frédéric Karamé






Fonctions de
plusieurs variables

Introduction

Nous avons commencé a étudier les fonctions d’une variable : par exemple, t — f(t) représente I'évolution
d’une population en fonction du temps. Nous avons vu comment déterminer ses propriétés (caractéristiques,
évolution, extremum, limites ...).

Mais la plupart des phénomenes sont multi-criteres et dépendent de plusieurs variables : par exemple, le
prix d'un logement dépend de plus d’un criteére ; de méme pour la probabilité d'un étudiant de trouver du
travail...

Le but de ce chapitre est de généraliser (succinctement) ce qu’on a appris pour les fonctions d’'une variable.

1. Définitions et représentations graphiques

Nous allons étudier les fonctions de plusieurs variables dans le cadre particulier de R? ou R®, mais également
dans le cadre général de R". Ces fonctions seront donc de la forme

f:ECR" >R,

ou n > 1 est un entier naturel.
Autrement dit, les éléments de 'ensemble de départ E seront des n-uplets du type (x,...,Xx,) que 'on peut
considérer comme des vecteurs et les éléments de ’ensemble d’arrivée seront des réels.

Définition 1.
f une est définie telle que :
f:ECR"—>R
(15 X9y e ey X1, X)) = (31, X950 ooy X1, Xp)-
Le cas le plus simple, n = 1, est connu depuis le lycée et a été abondamment revu cette année.
f:ECR—-R

x = f(x).

En renommant f (x) en y, la représentation graphique de la fonction sera une courbe dans le plan (0, x, y).
Par exemple :
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F)|---

Dans le cas n = 2, les choses se compliquent un peu. Le phénomene décrit par la fonction f dépend de
deux variables x et y. On le définira comme :

f:ECR?>R
(x,y) = f(x, ).

Ces fonctions (x, y) — f(x, y) seront notre principal sujet d’étude cette année. En renommant f (x, y) en g,

la fonction sera représentée par des surfaces dans I'espace (0, x, y, 2).

Z )

flx,y)

1 Oy f(x, )

()

é

(x,5)

Des que n > 2, il devient difficile d’avoir une représentation graphique car on sera dans un espace a n+1
dimensions (les n variables plus la valeur de la fonction f(.)). Mais nous pourrons quand méme faire ruser

et faire plein de calculs.

Exemple 1.
1. Distance d’un point a 'origine en fonction de ses coordonnées (x, y) :
f: R — R
(x,y) — Vx2+y2

2. Aire d’un rectangle en fonction de sa longueur x et sa largeur y :

f: R — R

(x,y) = xy.
3. Aire d’un parallélépipede en fonction de ses trois dimensions (x, y, %) :
f: R — R
(x,y,2) — 2(xy+yz+xz).
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1.1. Les ensembles de définition

Définition 2.

Si on nous donne d’abord une expression pour f(xy,...,x,), alors le de f est
le plus grand sous-ensemble D; C R" tel que, pour chaque (xy,...,x,) de Df, f(x1,...,X,) soit bien
définie. La fonction est alors f : D — R.

Exemple 2.

1. f(x,y)=In(1+x+y)
Il faut que 1 + x + y soit strictement positif, afin de pouvoir calculer son logarithme. Donc :

Df={(x,y)€R2|1+x+y>O}

Pour tracer cet ensemble, on trace d’abord la droite d’équation 1 + x + y = 0. On détermine ensuite de
quel c6té de la droite est 'ensemble 1+ x + y > 0. Ici, c’est au-dessus de la droite.

Yy

x+y+1=0

2. fx,y)=exp( L)
Le dénominateur ne doit pas s’annuler :

Dy ={(x,y) € R*| x>~y # 0}

Les points de 'ensemble de définition sont tous les points du plan qui ne sont pas sur la parabole
d’équation (y = x2).

Yy

1.2. Représentations graphiques

Définition 3.

Soit f : Dy C R2 — R une fonction de 2 variables. Le ¢ de f est le sous-ensemble de R3 formé
des points de coordonnées (x, y, f(x, y)) avec (x, y) dans 'ensemble de définition D;. Le graphe est
donc :

Y = {(x,y,z) eR?| (x,y) €Dsetz =f(x,y)}.
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Représenter graphiquement le graphe n’est donc possible que pour les fonctions d’une seule variable ou de
deux variables.
On peut s'intéresser a différentes représentations graphiques.

En tranches

Soit la fonction a deux variables f : (x,y) — f(x,y).

Représentation graphique de la fonction : %,

Une premiére facon de faire est de tracer, pour quelques valeurs de a et b, les graphes des fonctions partielles

fiix—=flx,b) et fy:y—f(a,y).

Intersection de ¥; avec le plan (y = b) Intersection de ¥; avec le plan (x = a)

En lignes de niveau

On va aussi s’intéresser a d’autres courbes tracées sur la surface : les courbes de niveau.

Définition 4.
Soit f : Dy C R? — R une fonction de deux variables.
e La z=c€Rest
LC = {(X,}’)GDf |f(X,J’):C}

e La z = c est la trace de %; dans le plan (z =¢) :

@fﬂ(z=c)={(x,y,c)€R3 If(x,y)zc}.
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La ligne de niveau c est une courbe du plan R?, la courbe de niveau c est une courbe de I'espace R*. On
obtient la courbe de niveau c en partant de la ligne de niveau c et en remontant a 'altitude c.

Exemple 3.
Soit f : R? — R définie par f(x,y) = x2+ y2.

» Sic <0, laligne de niveau L. est vide (aucun point n’a d’altitude négative).

e Sic =0, laligne de niveau L, se réduit a {(0,0)}.

e Sic > 0, laligne de niveau L. est le cercle du plan de centre (0,0) et de rayon 4/c. On remonte L, &
laltitude z = ¢ : la courbe de niveau est alors le cercle horizontal de I'espace de centre (0,0, ¢) et de
rayon 4/c.

Le graphe est alors une superposition de cercles horizontaux de I’espace de centre (0,0, c) et de rayon 4/c

avec c > 0.

axez
I T ST RN,

I T ST RN,

axez
L
S5 o o

—20.15_; 4

~05 g0 7 Q-iﬂ

—2.0_15_; 4
0.5 -
axe x 10 15 54 -20

0887
05 0.0 L e
axex °° 10 15 54 g

-2 -1 0 1 2

(@) f(x,y)en3D (b) Courbes de niveau (c) Lignes de niveau dans (0, x, y)

FIGURE 8.1 - Exemple : f(x,y) =2+ %
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(d) Tranches avec x constant (e) Tranches avec y constant
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FIGURE 8.2 — Exemple : f(x,y)=x?

z axe
z axe

-2 -1 0 1 2

(a) Surface (b) Courbes de niveau (c) Lignes de niveau dans (0, x, y)

zaxe
zaxe

o 05 1015 2.0

axe X

L,
.
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(d) Tranches avec x constant (e) Tranches avec y constant

FIGURE 8.3 — Exemple : f(x,y)=x?—y?
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Mini-exercices.
1. Déterminer et dessiner le domaine de définition de la fonction définie par f(x, y) = In(xy). Méme
question avec g(x,y)=+/2x—y2+1eth(x,y,z) = % + % + %

2. Soit f(x,y) = xy. Dessiner le graphe de f, les tranches et les lignes de niveau. Quelle surface

reconnaissez-vous ? Vous pouvez vous aider d’un ordinateur. Mémes questions avec g(x, y) = —x2—y2.

2. Limites et continuité (facultatif)

Les notions de limite et de continuité des fonctions d'une seule variable se généralisent en plusieurs variables
sans complexité supplémentaire : il suffit de remplacer la valeur absolue par la norme euclidienne. Dés lors,
tous les régles de calcul déja rencontrées peuvent s’appliquer.

2.1. Définition
Soit f une fonction f : E C R" — R définie au voisinage de x, € R", sauf peut-étre en x.
Définition 5.
La fonction f admet pour le nombre réel £ lorsque x tend vers x si :
Ye>0 36>0 Vx€e€E 0<|lx—x0ll <6 = |f(x)—L|<e
On écrit alors

limf =/ ou lim f(x)=14¢ ou flx) — ¢
Xo X—Xo

X—Xg

On définirait de méme lim,_,, f(x)=+oo par:
VA>0 36>0 Vx €E O0<|lx—x0ll <6 = |f(X)|>A
Remarque.

» La notion de limite ne dépend pas ici des normes utilisées.
o Si elle existe, la limite est unique.

2.2. Opérations sur les limites

Pour calculer les limites, on ne recourt que rarement a cette définition. On utilise plutot les théorémes
généraux : opérations sur les limites et encadrement. Ce sont les mémes énoncés que pour les fonctions
d’une variable : il n’y a aucune difficulté ni nouveauté.

Proposition 1 (Opérations sur les limites).
Soient f, g : R" — R définies au voisinage de x, € R" et telles que f et g admettent des limites en x. Alors :

lim(f +g)=1limf +1limg lim(f - g)=1Ilimf xlimg
Xo Xo Xo Xo Xo Xo
Et si g ne s’annule pas dans un voisinage de x :
1 1 lim
lim— = lim 'ﬁ - o f
X g lim, g x g lim, g
Remarque.
 Les résultats ci-dessus sont aussi valables pour des limites infinies avec les conventions usuelles :
1 1 1
l+o00=400, [—00=—00, —=+400, —=—-00, —— =0,
0+ 0- +oo

£ x 00 =00 (L #0), oo x oo = 0o (avec régle de multiplication des signes).
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 Les formes indéterminées sont : +00 — 00,

5

ol o

00
—,0x00,,00° 1% et 0°.
00

La composition est aussi souvent utile :
* soit f : R" — R une fonction de plusieurs variables, telle que lim,_,, f(x)=¢,
* soit g : R — R une fonction d’une seule variable, telle que lim,_,, g(t) = ¢/,
« alors la fonction de plusieurs variables g o f : R" — R définie par (g o f)(x) = g( f (x)) vérifie
lim,, (g0 f)(x)="0".

Il existe aussi un théoréme « des gendarmes ».

Théoréme 1 (Théoréeme d’encadrement).

Soient f,g,h : R" — R trois fonctions définies dans un voisinage U de x, € R"™.
o Si, pour tout x € U, on a f(x) < h(x) < g(x),
o etsilim, f=lim, g=1{,

alors h admet une limite au point x et lgcr?h =/.

2.3. Fonctions continues

Définition 6.

1. f:ECR" > Rest €Esi lim f(x)= f(xp)-
X=X
2. f est si elle est continue en tout point de E.

Par les propriétés des limites, si f et g sont deux fonctions continues en x, alors :
« la fonction f + g est continue en X,
« de méme f g et f/g (avec g(x) # O sur un voisinage de x,) sont continues en X,
» sih:R — R est continue, alors h o f est continue en xg.

Exemple 4.

« Les applications définies par (x,y) — x +y, (x,y) — xy, puis toutes les fonctions polynémes en deux
variables x et y sont continues sur R? (par exemple (x,y) — x2 + 3xy). De la méme facon, toutes les
fractions rationnelles en deux variables sont continues 1a ot elles sont définies.

« Comme l'exponentielle est une fonction continue, alors (x, y) — e*¥ est continue sur R2.

L_ est continue sur R? \ {(0,0)}.

« La fonction définie par f(x,y) =

Définition 7 (Prolongement par continuité).

Soit f : E C R™ — R. Soit x un point adhérent a E n’appartenant pas a E. Si f(x) a une limite £ lorsque
X — Xg, on peut étendre le domaine de définition de f a E U {x,} en posant f(x,) = {. La fonction
étendue est continue en x,. On dit que l'on a obtenu un au point xg.

Exemple 5.
Soit f : R?\ {(0,0)} définie par

Est-il possible de prolonger f par continuité en (0,0)?
Sur la figure ci-dessous, la question devient simplement : est-il possible de boucher le trou au milieu de la
surface en rajoutant juste un point?
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Solution.
o Limite a l’origine.
On utilise que |x| < v/x2+ y2 et |y| < v/x2+ y2. Donc
ooy =2 s
VXx2+y2 (x,y)=(0,0)
» Prolongement.
Pour prolonger f en (0, 0), on choisit comme valeur la limite obtenue. On pose donc f(0,0) = 0. (On
note encore f : R> — R la fonction prolongée.)
o Continuité.
Par notre choix de f(0,0), f est continue en (0, 0). En dehors de l'origine, f est continue comme somme,
produit, composition, inverse de fonctions continues. Conclusion : la fonction prolongée est continue
sur R? tout entier.

Mini-exercices.

1. Sachant que la limite de f(x,y) = % en (0,0) est 1, calculer la limite des fonctions suivantes en
L1+ 2 2. 4y, 1+
(0,0).ﬁ+x +y ,H—x,ln(ﬁ).

2. Sachant que In(t) < t — 1 pour tout t > 0, calculer la limite de 11111;3 2 en (0, 0).

3. Soit f définie sur R? \ {(0,0)} par f(x,y) = % f admet-elle une limite en (0,0)? f est-elle

prolongeable par continuité en (0,0) ? Mémes questions avec f(x,y) = #y;ﬂ
3. Dérivées partielles premiéres
Rappelons la notion de dérivée pour f : R — R une fonction d’une seule variable. La de f en x5 €R,

si elle existe, est :
flxo+h)—f(xo) _df
h T dx

/ .
Xo) = lim Xg)-

£/(xg) = lim (x0)
Exemple 6.
La fonction f : R — R définie par f(x) = x? est dérivable, de dérivée f’(x,) = 2x,. En effet, lorsque h tend
vers O,on a:

(xo +h)?— xg

—— =2xg+h — 2xq.

h 0 h—0 0

Pour une fonction de plusieurs variables, il y a une dérivée pour chacune des variables, qu'on appelle dérivée
partielle.
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3.1. Définition

Définition 8.

Soit f : U C R" —» R, ou U est un ouvert de R". On dit que f admet une par rapport a
la variable x; au point xy = (ay,...,a,) € R" si la fonction d’'une variable
x;—= flay, ..., ai.1,%;, Q150+, ay)

est dérivable au point a;. Dit autrement, on définit la dérivée partielle de f par rapport a x; au point

xo =(ay,...,a,) par

. flay,...,a;+h,...,a)—f(ay,...,a,) _ Of
lim =—
h—0 h ox;

(x0)

si cette limite existe.

C’est la dérivée partielle de f par rapport a x; au point x,. Le symbole « & » se lit « d rond ». Une autre
notation est d, f (xo) ou bien £ (xo).
Il y a donc n dérivées partielles au point x; :

oy 25
dx, 0 dxy 0 ox,

(x0)

Dans le cas d’'une fonction de deux variables (x, y) — f(x,y), on a deux dérivées partielles :

of
ox

f(X0+h,y0)—f(X0,y0) ﬁ
h dy

f(xo,y0+h)—f(x0,y0)
h

(x0, Y0) = }1115(1) (x0,Y0) = }1113})

Remarque.
Pour une fonction d’une variable f : R — R, on distingue le nombre dérivé f’(x,) et la fonction dérivée f’
définie par x — f’(x). Il en est de méme avec les dérivées partielles. Pour f : R2 - R :

G,
(x0, Yo) €t —f(xo, ¥o) sont des nombres réels.

dx y
of of . .
» —— et —— sont des fonctions de deux variables, par exemple :
dx Jdy
9. R R
dx

) — Ly
X

3.2. Interprétation géomeétrique

Pour une fonction d'une variable, la dérivée en un point est la pente de la tangente au graphe de la fonction
en ce point.

Pour une fonction de deux variables (x, y) — f(x,y), les dérivées partielles indiquent les pentes au graphe
de f selon certaines directions (le graphe est ici une surface). Plus précisément :

. g—{((xo, ¥o) est la pente au graphe de f en (xg,yy) suivant la direction de I'axe (Ox). En effet, cette
pente est celle de la tangente a la courbe z = f(x, y,) et est donnée par la dérivée de x — f(x,y,) en
Xg. C’est donc bien %(xo, ¥o)-

. %(xo, Yo) est la pente au graphe de f en (xg, o) suivant la direction de I'axe (Oy).

Reprenons la représentation graphique de la fonction précédente.
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3
%(XO,J’O)

2
%(XO;J’O)

Sur la figure de gauche, la dérivée part1e11e indique la pente en un point d’'une tranche paralléle a 'axe
(Ox) (en orange). La variable y est donc cons1deree comme une constante, égale ici a y,. La variation se
fait par rapport a la variable x et la dérivée est ensuite calculée en x,.

: . e . f o . s
Sur la figure de droite, la dérivée partielle % indique la pente en un point d’une tranche parallele a I'axe
(Oy) (en vert). La variable x est donc considérée comme une constante, égale ici a x,. La variation se fait
par rapport a la variable y et la dérivée est ensuite calculée en y .

3.3. Exemples

Dans la pratique, pour calculer une dérivée partielle par rapport a une variable, on utilise rarement la
définition avec les limites. En effet, il suffit de dériver par rapport a cette variable en considérant les
autres variables comme des constantes.

Exemple 7
Calculer les dérivées partielles premiéres de la fonction f : R? — R définie par

flx,y)=x%

Solution.
Pour calculer Z_f’ qui est la dérivée partielle de f par rapport a x, on considére que y est une constante et
on dérive x2e3’ comme si c’était une fonction de x :

L, yy=2xe
Pour l'autre dérivée partlelle 9 , on considére que x est une constante et on dérive x2e®’ comme si c’était
une fonction de y :
G,
—f(x,y) = 3x2e%,
dy
Exemple 8.
Soit f : R" — R définie par f(xy,...,x,) = x>+ x5 +---+x2. Alors, pouri = 1,...,n,on a
of
Ic ——(x1,...,X,) = 2x;.
L
Exemple 9.

Une fonction peut avoir des dérivées partielles sans étre continue !
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La fonction f : R?> — R suivante admet des dérivées partielles en tout point mais n’est pas continue en
(0,0) :

si(x,y) #(0,0)

XYy
fle,y)= { x?+y?
0 en (0,0)

1. Non continuité a ’origine.
2
Pour les points (t,t), avect #0, on a f(t,t) = 2t_r2 = % qui ne tend pas vers f(0,0) =0 quand t tend
vers 0. Donc f n’est pas continue en (0, 0).

2. Dérivées partielles en dehors de l’origine.
On se place en un point (xg, yo) 7 (0,0). Dans un voisinage de ce point, f est définie par f (x,y) = #}:\/2
La fonction x — f(x, y,) est donc continue et dérivable au voisinage de x,. La dérivée partielle s’obtient
en dérivant la fonction d’une variable x — f(x, y,). Ainsi, on a
O (o yo) = Yo —%3Yo
2. X0,Y0) = T 5o
0x (x5 + Y32

De méme, en dérivant la fonction y — f(x,,y), on trouve

of
oy

3 2
Xy —XoY;
(x0,¥0) = T2, g
(x5 + )

3. Dérivées partielles a l’origine.
Comme la fonction f est définie en (0, 0) par une formule spéciale, il faut revenir a la définition de ce
que sont les dérivées partielles a I'aide des limites :

of .. f(0+h,0)—f(0,0) .. 0

x>0 =lim h = jmy, =0
De méme :

gy 00 = lim h = himy =0

Conclusion : quel que soit le point (xg, ¥y) € R?, les dérivées partielles %(XO, ¥o) et %(xo, ¥p) existent.

3.4. Gradient (facultatif)
Définition

Le gradient est un vecteur dont les coordonnées sont les dérivées partielles. Il est trés important en physique
et a des nombreuses applications géométriques, car il indique la direction perpendiculaire aux courbes et
surfaces.

Définition 9.
Soit f : R"™ — R une fonction admettant des dérivées partielles. Le en x =(xq,...,x,) €R",
noté grad f (x), est le vecteur

a_f(x)

dxq

gradf(x)=|
2

L x)

ox,

Les physiciens notent souvent V f (x) pour grad f (x). Le symbole V se lit « nabla ».
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Pour une fonction f(x, y) de deux variables, au point (xy, Yo), on a donc

d
a—f(xo,.)’o)
grad f (xq, yo) = a}(
a—(xo,}’o)
Y
Exemple 10.
. 9.3 2xy? . 4
e Sif(x,y)=x"y” alors grad f(x,y) = 3x2y2 )’ Au point (xg, yy) =(2,1),ona grad f(2,1) = 12 )
2X1
o Sif(xy,...,x,) =xf+x§+---+x§ alors grad f (x1,...,x,) =
2x,

Interprétation géométrique

Soit f : R? — R une fonction différentiable et soit k € R. On considére les lignes de niveau f(x,y) = k,
c’est-a-dire ensemble des (x, y) € R? qui vérifient 'équation f(x,y) = k.

Proposition 2.
Le vecteur gradient grad f (xg, yo) est orthogonal a la ligne de niveau de f passant au point (x, ¥o)-

Sur ce premier dessin, vous avez (en rouge) la ligne de niveau passant par le point (x, ¥,). En ce point est
dessiné (en vert) un vecteur tangent v et la tangente a la ligne de niveau. Le vecteur gradient (en bleu) est
orthogonal a la ligne de niveau en ce point.

y A
grad f(x,Yo)
T s v
(xo,)’o
/1 N

En chaque point du plan part un vecteur gradient. Ce vecteur gradient est orthogonal a la ligne de niveau
passant par ce point.
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<

N
N

<

Considérons les lignes de niveau f(x, y) = k d’une fonction f : R> — R. On se place en un point (xq, yo)-
On cherche dans quelle direction se déplacer pour augmenter le plus vite la valeur de f.

Proposition 3.
Le vecteur gradient grad f (xg, yo) indique la direction de plus forte pente a partir du point (xg, Yo)-

Autrement dit, si 'on veut passer le plus vite possible du niveau a a un niveau b > a, a partir d'un point donné
(xg,Yo) de niveau f (xg, yo) = a, alors il faut démarrer en suivant la direction du gradient grad f (xq, yg)-

Y
f=b
\_/ / e
/ "
grad f(xo, yo)
(XO:J’O)

Comme illustration, un skieur voulant aller vite choisit la plus forte pente descendante en un point de la
montagne : c’est la direction opposée au gradient.

Mini-exercices.
1. En utilisant seulement la définition avec les limites, calculer les dérivées partielles de la fonction f
définie par f(x,y) = x2y.

2. Calculer les dérivées partielles de la fonction f définie par f(x,y) = e *. Méme question avec

fOo,y)=x2+3y2—2sin(xy); f(x,y)=V/1—x2—y2; f(x,y,2) = xy? +2e"/%; f(x1,...,%,) =

xqIn(xy + -+ x,).

3. Soit f : R> — R définie par f(x,y) =05si 0 < y < x? et f(x,y) = 1 sinon. Montrer que f a des
dérivées partielles en (0, 0), mais n’est pas continue en (0, 0).
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4. Dérivées partielles d’ordre 2

4.1. Définition

Pour les fonctions d’'une variable, la dérivée seconde s’obtient en dérivant la dérivée premiere qui est une

Fe=¢wy =t ()=

x \dx /)  dx2?’

fonction :

Soit f : R? — R une application différentiable. Les deux dérivées partielles % et % sont aussi des fonctions

de R? dans R ; supposons que ce soient aussi des applications différentiables. On peut alors calculer les
deux dérivées partielles de % :

9 (ﬂ) o 2 (ﬁ)

dx \ dx oy \ Ox
et les deux dérivées partielles de g—{, :

9 (3_f) o 2 (3_f)

dx \ 3y oy\aoy )

o%f d%f % f % f
Jx2 dydx oxdy dy2

Ce sont des fonctions de R? dans R.

On note ces dérivées partielles :

Plus généralement, pour f : R"™ — R, on note % :R"™ — R les dérivées partielles d’ordre 1 (1 <i < n) et

2
aij EJ; P les dérivées partielles d’ordre 2 (1 <i,j < n).

4.2. Théoreme de Schwarz

Pour f : R? — R, il y a quatre dérivées partielles secondes & calculer, mais en général deux d’entre elles sont
égales. En effet,
d%f
dydx

d%f
dxdy

(x,y)= (x, ).

Dans ce cas, il n’y a donc que trois dérivées partielles a calculer car le résultat ne dépend pas de I'ordre dans
lequel on effectue les dérivations partielles. C’est un phénomeéne général que I'on va détailler.

Définition 10.
Une fonction f : R" — R est de si f est de classe 6! (C’est-a-dire ses dérivées partielles
existent et sont continues) et si ses dérivées partielles sont aussi de classe @1.

Théoréme 2 (Théoréme de Schwarz).
Soit f : U C R™ — R une fonction de classe 62. Pour tous i,j € {1,...,n}, ona:

o (2vy) 7 (5n)

Ainsi, pour f : R? — R de classe 42, ona:
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o%f
Jdydx

o%f
Oxdy

(x,y)=

(x,y)

Pour f : R® — R de classe 62, il y a 9 dérivées partielles d’ordre 2, mais seulement 6 calculs 2 faire :

o%f % f % f o%f  9%f o%f  o°*f o%f 9%
Jx2 Jdy2 0z2 dydx 03xdy 9z0x Ox0z 9z0y 0yodz

Le contre-exemple suivant, qui peut étre omis lors d’une premiere lecture, prouve qu’il est nécessaire d’avoir
une fonction de classe 62. Si cette hypothése manque alors les dérivées partielles croisées peuvent ne pas
étre égales.
Exemple 11.
Soit f : R? — R la fonction définie par
xy®
fl,y)= x24yr o (x,y)#(0,0) et f(0,0)=0.

On vérifie que f est de classe € sur R? et que

5_,2,3
9 = ﬁ si (x,y) # (0,0)
” 0 si (x,y) =(0,0)
et
3%y +xyt
%(x,yh (x4 y2)2 si (x,y) # (0,0)

0 si (x,y)=(0,0).
Le taux d’accroissement

d o}
0,y)-50,0)
=1—1

y—O y—0
2

yox

ce qui montre que 3 (0,0) = 1. De méme, le taux d’accroissement

0 J
06,0 = 0,0

0—0
x—0 x—0
. o°f i . . .
ce qui montre que W(O’ 0) = 0. Les dérivées partielles croisées ne sont pas égales en (0,0). On en
xoy

82 2
foou 2t
oxdy Jdydx
Autrement dit, la fonction f n’est pas de classe 62 en (0,0) et le théoréme de Schwarz ne s’applique pas.

déduit que I'une (au moins) des dérivées partielles secondes n’est pas continue en (0, 0).

4.3. Hessienne

La matrice hessienne est la matrice des dérivées partielles d’ordre 2.
Soit f : R" — R une fonction de n variables. La de f en x =(x4,...,X,) est la matrice
n x n de forme générale :

22f
H(x) =
s0 (8xi3xj (X))1<ij<n

Pour une fonction de classe 62, d’apres le théoréme de Schwarz, c’est une matrice carrée symétrique

Cest-a-dire que les €léments q;; de la matrice A de format n vérifient a;; = a;;, Vi,j€1,...,n.
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Dans le cas d’une fonction de deux variables (n = 2) :

82 82

Ty w50y
Hy(x,y)=1| &2 92f

ayax(x:}’) ayz(x:.)’)

Pour trois variables (n = 3), la matrice hessienne (a évaluer en (x, y,z)) vaut :

% f 2%f 2%f

ox2 0xdy 0xo0z

o= | 2% @ o

f = | 3yox 8%/2 dyodz
o f o°f

dzdx  0zdy 322

Exemple 12.
Calculons la matrice hessienne de f(x,y) = xy?+x*—y*.
On calcule d’abord

) )
a—f(x,y) =4x° + y? f

——(x,y)=2xy—4y>
x dy

On a donc

92 92
&L (x,y) axé}(x,y))_(uxz 2y )

Hg(x }’)— 2 2
L 2 d 2
(aygx(x’y) 3}’]; (X,_)/) 2}/ 2x 12y

Mini-exercices.

1.

Soit f(x,y) = x3+5x2y — y2. Calculer les dérivées partielles d’ordre 1 de f. Calculer les dérivées
partielles d’ordre 2 de f. Vérifier la validité du théoréme de Schwarz. Calculer la matrice hessienne de
f. Calculer les dérivées partielles d’ordre 3 de f.

Soit f(x,y) = xeX " Calculer les dérivées partielles d’ordre 1 et d’ordre 2 de f. Calculer la matrice
hessienne de f.

Soit f(x,y,2) = xy?In(z). Déterminer 'ensemble de définition de f. Calculer les dérivées partielles
d’ordre 1 et d’ordre 2 ainsi que la matrice hessienne de f.

5. Optimisation

Comment trouver le maximum (ou le minimum) d’une fonction f : R" — R ? Cette section est consacrée
a I'étude de l'existence des extremums. Nous apprendrons a repérer les extremums locaux (qui ne sont
pas nécessairement des minimums ou maximums globaux). Pour mieux comprendre ce qui se passe en

plusieurs variables, on commence par revoir rapidement le cas d’'une variable.

5.1.

Rappel du cas d’une variable

Soit f : R — R une fonction d’une variable.
e f admet un en x, € R §’il existe un intervalle ouvert I contenant x, tel que :

pour tout x € I F) < fxg)-

e f admet un en x, € R s’il existe un intervalle ouvert I contenant x, tel que :

pour tout x € I () = f(xg)-

e f admet un en xy € R si f admet un maximum local ou bien un minimum local en ce

point.
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e f admet un en x, € R si f'(xy) = 0. Géométriquement, c’est un point de tangente
horizontale.

« Proposition : si f dérivable admet un minimum local ou un maximum local en x,, alors f’(x,) = O.
Autrement dit, si x est un extremum local alors c’est un point critique.

o Laréciproque n’est pas toujours vraie. Par exemple, pour f : x — x3, le point x, = 0 est un point critique,
mais ce n’est ni un maximum local ni un minimum local (c’est un ).

Y ‘ﬁ maximums locaux

rd maximum global

minimum local 7

- \f

Sur la figure de gauche : des exemples de minimum local, maximum local, maximum global; il n'y a pas de

minimum global sur R. Sur la figure de droite : un extremum local est nécessairement un point critique.

La recherche pratique des extremums locaux pour une fonction d’une variable se passe donc ainsi :

1. On recherche les points critiques donnés par 'équation f’'(x) = 0.

2. Pour chaque point critique x,, on calcule la dérivée seconde :
o sif”(xq)> 0, alors f admet un minimum local en x,

e si f”(xq) <0, alors f admet un maximum local en x,

e si f”(xy) =0, alors il faut approfondir I’étude.

Exemple 13.
e f:x~ x2, minimum local en 0, on a f’(0) =0 et f/(0) > 0.
e f:x— —x? maximum local en 0, ona f’(0) =0 et f”(0) < 0.
e f:x~— x2, ni minimum ni maximum local en 0, on a f’(0) =0 et f”(0) = 0.
flx)=x? flx)=—x? flx)=x
Remarque.

Lorsque f :[a, b] — R est définie sur un intervalle compact, il faudra en plus étudier le comportement de f
en a et en b (c’est-a-dire au bord du domaine de définition). Comme I'ensemble de départ est compact, on
a la garantie de l'existence d’extremums globaux.
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5.2. Cas de deux variables
Soit f : U — R une fonction de deux variables, ol U est un ouvert de R2.

Définition 11.
On dit que f admet un (resp. ) en (xg,y,) € U s'il existe un disque
ouvert D C U, centré en (xg, yo), tel que :

Vx,y)eD  f(x,y) < f(x0,¥0)

(resp‘ f(x; .y) 2 f(x07 y()))
On dit que f admet un en (xg, Yp) si elle y admet un maximum local (resp. minimum
local).

On suppose f de classe 62 sur un ouvert U, c’est-a-dire que ses dérivées partielles jusqu’a I'ordre 2 existent
et sont continues.

Proposition 4.
Si f admet un extremum local en (xg, yo) d’un ouvert U, alors

of of
a(xO:.VO) =0 et E(XOJO) =0.

Démonstration. La fonction d’'une variable x — f(x, y,) admet un extremum local en x, sur un ouvert de
R, donc sa dérivée, qui est %(x, ¥o), Sannule en xy. On fait de méme avec y — f(xq, y). O

Autrement dit, si f posséde un minimum ou maximum local en un point, alors toutes les dérivées
partielles sont nulles en ce point (le gradient de f est le vecteur nul en ce point). Les points de U sont
appelés de f. Le résultat précédent dit que les extremums d’une fonction sur un ouvert ne
peuvent se produire qu’en un point critique. La réciproque est fausse.

Comme pour les fonctions d’une variable, ce premier critére n’est pas suffisant pour caractériser un
maximum ou un minimum. Il nous faut un second critére en utilisant la hessienne (les dérivées a 'ordre
2).

Pour une fonction f : R?> — R, nous utiliserons le critére de Monge, qui fournit un critére simple pour
détecter un minimum ou un maximum local. Il faut pour cela savoir calculer les mineurs d’'une matrice.

Définition 12.

Soit A= (a;;)1<i,j<n Une matrice carrée symétrique de taille n a coefficients dans R.

Soit k tel que 1 < k < n.

On appelle , noté M, (A), le déterminant de la sous-matrice carrée de A de taille k
obtenue en partant d’en haut a gauche de A. Pour une matrice de taille n, il y a donc n mineurs a calculer.

Exemple 14.
Soit la matrice

= NN
N VR O

e Le mineur d’ordre 1 : M;(A) =a;; = 1.

1 2
o Le mineur d’ordre 2 : M,(A) = det (2 2) =2—4=-2

e Le mineur d’ordre 3 : M5(A) = det(4) =...
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Théoréme 3 (Critére de Monge).

Soit f : R? — R une fonction de classe €2 et soit (x,, yo) un point critique de f. Soit la matrice Hessienne

en le point critique :
3*f 3*f
722 (X0, ¥0) %57 (X0, Y0)
Hy(x0,Y0) = ( o5 S

S0 y0)  Sh0x0,v0)
Alors :
o si My (Hs(x0,Y0)) > 0 et My(Hy(xo,y0)) > 0, alors (xq, ¥o) est un minimum local de f ;
o si My(H(x0,Y0)) <0 et My(H(x0,Y0)) > 0, alors (xg, o) est un maximum local de f ;

o si My(Hf(xg,Y0)) < O, alors (xq,y) nest ni un minimum local ni un maximum local : c’est un
point-selle;

o si My(H(xg,Y0)) = 0, on ne peut pas conclure directement (il faut approfondir Uétude).

Exemple 15.
f(x,y) =x?+ y2. C’est un exemple de minimum local atteint en (0, 0).

Z axe
=N W os WO -

Le point (0,0) est 'unique point critique de f. On calcule la hessienne : H(0,0) = (% (2)) Comme
M, (H¢(x0,Y0)) =2> 0 et My(Hg(xg,Y0)) =4 >0, (0,0) est bien un minimum local de f.
Exemple 16.

f(x,y) =—x%—y?2. Cest un exemple de maximum local atteint en (0,0). A chercher.

2 aXe
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Exemple 17.

f(x,y) = x?—y?. Cest un exemple de point-selle en (0, 0).

Z axe

0.0
Uy, 0.
o 5 100
2.0 _pgl5

2.0
0 05 10 L5

axe %

On trouve un seul point critique : (0, 0). On calcule H¢(0,0) = (% 5 ) Comme M,(H{(xg,y0)) =—4 <0,
(0,0) correspond bien a un point-selle.

Un autre nom pour cette surface est un col (en référence a un col en montagne). En effet, le point (0,0, 0)
est le point de passage le moins haut pour passer d'un versant a 'autre de la montagne.

Pour résumer, la recherche pratique des extremums locaux pour une fonction a plusieurs variables se passe
donc ainsi :

1. On recherche les points critiques donnés (x,, y,) par le systéeme de dérivées partielles égales a 0.

. Pour chaque point critique (xg, y,) trouvé, on calcule la hessienne :
si tous les mineurs de la matrice hessienne sont positifs, alors (xg, yo) est un minimum local de f ;
s'il y a alternance de signe en commencant par le négatif, alors (xg, yo) est un maximum local de f ;

si My(H{(x0,Y0)) < 0, alors (xg, y) n’est ni un minimum local ni un maximum local : c’est un
point-selle ;

si My(H{(x0,Y0)) = 0, on ne peut pas conclure directement (il faut approfondir I'étude).

5.3. Autres exemples

Exemple 18.
Soit f : R? — R définie par f(x,y) = x>+ y®>—3xy.

Z axe
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o Dérivées partielles.
af
ax
of

» Points critiques. Ce sont les points ol %(x, y)=20cet W(x, y) = 0 en méme temps. On a donc

8
(x,y)=3x*—-3y %(x,y)=3y2—3x

simultanément x2 = y et y? = x (ce qui implique x,y > 0). D’'ott x* = y2 = x dont les solutions
positives sont x = 0 (et alors y =0) et x =1 (et alors y = 1). Ainsi, les points critiques sont (0,0) et

(1,1).
» Dérivées partielles secondes.

a2 o2f
) -6 g
axz(x’y) X oxdy

H{(0,0) = (_03 _03)

M;(H(0,0)) =0 et My(Hf(0,0)) =—9 < 0, donc (0, 0) est un point-selle.

« Etude en (1,1).
6 -3

M, (H(0,0)) = 6 et My(Hf(0,0)) =36—9 = 25> 0, donc (1, 1) est un minimum local de f.

o%f

(X’Y):—S a_}/Z(ny):6.y

« Etude en (0,0).

Exemple 19.
Voici un exemple ou le critere ne permet pas de conclure. Il faut terminer I'étude a la main.
Soit f(x,y) = 2x3 — y*—3x2. On trouve deux points critiques : (0,0) et (1,0). Par ailleurs :

Hf(o,0)=(_06 g) et Hf(1,0)=(g 8)'

On ne peut pas conclure car M,(H(0,0)) et My(H((1,0)) sont nuls. On étudie chaque cas a la main.

axe z

&,

« En (0,0). Ecrivons f (x,y) = x2(2x —3) — y*. Pour |x| < 1, on a 2x —3 < 0, et donc
fle,y)=x*(2x-3)—y*<o.

Comme f(0,0) =0, alors f admet un maximum local au point (0, 0).
« En (1,0). Tout d’abord, on se limite aux points de la forme (1, y) (autour de y, =0) :

fLy)=-1-y*<-1=f(1,0)
Ensuite, on se limite aux points de la forme (x,0) (autour de x, = 1, par exemple pour x tel que
lx—1]<1):
f(x,00=(x—1)*2x+1)—1>—-1=f(1,0)
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Donc, en (1,0), ce n’est ni un minimum ni un maximum : c’est un point-selle.

Mini-exercices.

1. Soit f(x,y) = exp —%x3 + x — y?2). Déterminer les deux points critiques de f et la nature
(minimum/maximum/point-selle) de chacun d’entre eux.

Z aXe

1 *
15 2 at®

2. Soit f(x,y) = x> —3xy?. Déterminer le point critique de f et sa nature. Le graphe de f s’appelle une
« selle de singe ».

Z axe

. Soit f(x,y) = x*+ y*—2x2. Déterminer les trois points critiques de f. Le critére de Monge permet-il
de conclure ? Déterminer quand méme la nature de chacun de ces points critiques.
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6. Optimisation sous contrainte d’équation linéaire

L'idée ici est de réduire la dimension du probléme a traiter en procédant par substitution.

Pour cette année, nous allons utiliser un exemple classique simple : le probleme du consommateur dans
une économie a deux biens. Plutét que de manipuler un probléme complexe, on va se ramener ici a un
probléeme d’optimisation a une variable.

Résolution du programme de maximisation sous contrainte si n = 2

1/2_1/2

max_u(xy;xy) = Xx;' "X,

(o152
SC:1p1X1 +p2xy <R
on applique une transformation croissante a la fonction d’utilité pour en simplifier 'expression.
On sature la contrainte de budget p;x; + psx5 =R.

On exprime x, en fonction de x;.

= P P =

On remplace x, dans la fonction d’utilité transformée pour se ramener a un probléme de minimi-
sation & une variable x; sans contrainte.

On résoud la CPO ZLX'I) | x=x; = 0 pour trouver T

o

6. On déduit x de la solution en utilisant la contrainte budgétaire.

= On a donc x}(p1;p2;R) et x5(p1; pa; R), les fonctions de demande de biens a l'optimum.

1. On va transformer la fonction d’utilité a maximiser pour la rendre plus facile & manipuler. Prenons par
exemple : v = 2Inu. C’est une transformation croissante donc cela ne change pas la solution du probléme.

v =2Inu(x;;x5) =2In (x}/zx;/z)
=2In (x}/z) +2In (x;/z)
1 1
= 25 ln(xl) + 25 ln(XZ)
=1In(x;)+1In(x,)

2. La contrainte budgétaire est forcément saturée si 'agent est rationnel : I'argent non dépensé ne sert pas a
la consommation. L'utiliser pourrait permettre de consommer plus et donc d’augmenter la satisfaction.

P1X1+paXxy; =R

3. On a notre contrainte linéaire. Comme on a une relation entre x; et x,, isolons x :

4. On va procéder par substitution. On remplace x, dans 'objectif :

v=1In(x;)+1n(x,)
B R—p1x;
—ln(x1)+ln( Dy )
=1In(x;)+In(R—p1x;) —In(p,)
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Le programme de maximisation d’une fonction a 2 variables sous contrainte peut donc se réécrire
comme un programme de maximisation d’une fonction a 1 variable SANS contrainte :

max x}/zx;/z

(x15%2) < max {In(x;)+In(R—p;x;)—In(py)}
. xl

SC:p1Xy+Ppaxy SR =v(x1)

5. On résoud : on écrit la Condition du Premier Ordre (CPO) :

dv _ d{ln(x;) +1In(R—pyx;)—1In(py)}

dx; dx,
_dlinGx)} | dn®=pix))} _ d{In(p,)}
dx1 Xm dX]_
1 —
=—4+ _Th1 -0
X1 R—p1xq
1 P1

X1 R—p1xq

En la solution x; = xJ, la dérivée premiere est nulle :

d 1
—v(xf)=O(:) —*—p—l*zo
dx; x] R—pix]

1 P1

o *
x]  R—pix]

*
& R—pix] =p1x]

& R=2p;x]
S x]=—
2p;
6. On sait que :
R
x2:__&x1<:> ;___pl *
P2 D2 P2 P2
R R
P2 P22p1
. R R
Sx=——
P2 2p;
. 2R R
S X, =——
2py  2p,
. R
S Xy =—
2p,

[ . . . R
La décision optimale du consommateur est le panier de biens E* = (x{ = 2—; x5 = 2—)
D1 D2

On sait qu’on a trouvé la bonne solution parce que la décision du consommateur s’exprime en fonction des
variables exogenes du probléme R, p; et p,.



FONCTIONS DE PLUSIEURS VARIABLES

X2

X1

7. EXERCICES

148

La représentation graphique avec les lignes de niveaux de la fonction d’utilité dans le plan (0, x;, x5) nous
montre que plus on va vers le Nord-Est du plan (plus on consomme), plus I'utilité augmente. Le programme

sans contrainte aurait donc pour "solution" des quantités infinies.

La contrainte budgétaire permet de trouver une solution finie au probléme en le point E*. La contrainte est

donc effective et influence le résultat du programme d’optimisation.

Remarque.

Nous aurons recours a cette méthode en premiére année. Le prochain cours d’outils math en L2 permettra

d’étudier une méthode plus générale utilisant le Lagrangien.

7. Exercices

TD

Exercice 103
Soit la fonction f (x,x,) = 2x? 4+ 5x2 — 4x,x, + 6x, + 4.

1. Résoudre le systeme des conditions du premier ordre

df(x1,x,) —0
ox,

df(x1,x,) —0
ax,

pour déterminer un extremum possible.

2. Calculer la matrice hessienne

82f(x1’x2) azf(xl,xz)

H=| _, dx? 23x13x2
a f(x17x2) a f(x1>x2)
0x,0x, dx3

en le point candidat trouvé a la question précédente (si nécessaire).
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3. Calculer les mineurs de la matrice hessienne. Le point candidat est-il un maximum ? Un mini-
mum ?

Exercice 104
Soit un consommateur qui envisage d’acquérir les quantités x; et x, de biens 1 et 2 (dont les prix
respectifs sont p; et p,), qui dispose d’'un revenu R et dont la fonction d’utilité est U(x;, x5) = x; .

1. Ecrire la contrainte budgétaire du consommateur.

2. Ecrire le programme du consommateur.

3. En se placant a 'optimum, ré-écrire le programme par substitution.
4

. Le résoudre.
Entrainement

Exercice 105

Soit un échantillon de taille N. Soit la droite de régression y; = a + bx; + ;. On veut estimer les
valeurs de a et de b par la méthode des Moindres Carrés Ordinaires. Pour cela, il faut résoudre le
programme de minimisation suivant : nanbn Zf’zl ez.

1. Ecrire les dérivées partielles du probleme en fonction de a et de b.

2. Les conditions du premier ordre s’annulent en les solutions @ et b. Résoudre le systeme de deux
équations a deux inconnues par substitution.

3. Construire la matrice hessienne (la matrice des dérivées partielles au second ordre du probleme
en fonction de a et de b).

4. Montrez qu’on est bien a un minimum.

Exercice 106

Soit une suite de n variables aléatoires (X;, X5, ...,X,) identiquement et indépendamment distri-
(x —m)?
buées selon une loi normale A (m, c*) de densité de probabilités ¢ (x) = \/:ze 20% . On
2no

veut estimer les parameétres m et o2 en résolvant le programme du maximum de vraisemblance :

maéc{ >t Ing(x)}.

n v\2
2 Zi:](Xi _X)
EEe—
2. Construire la matrice hessienne en la solution trouvée.

1. Ecrire les CPO et montrer que M =X et &

3. Montrer qu’on est bien a un maximum.

Auteurs du chapitre
e Arnaud Bodin. D’aprés des cours de Abdellah Hanani (Lille), Goulwen Fichou et Stéphane
Leborgne (Rennes), Laurent Pujo-Menjouet (Lyon). Relu par Anne Bauval, Vianney Combet et
Barbara Tumpach.
o Frédéric Karamé.
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