
Exercices corrigés
Outils Math 1

Chapitre 1
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Exercice 1
La demande de montres SLOUK est de 10 unités si le prix est égal à 160 euros et elle est de 20
unités si le prix est 120 euros. Calculer la fonction de demande supposée linéaire.

Correction :
Postulons la fonction de demande linéaire :

D(p) = a+ b× p

où p est le prix d’une montre et D(p) la quantité de montres demandées pour ce prix, a et b sont
des paramètres réels que nous devons déterminer.

On sait que les paramètres a et b doivent satisfaire :
¨

10 = a+ b× 160

20 = a+ b× 120

la droite, pour l’instant inconnue, doit passer par les points (160,10) et (120, 20).

Nous avons deux inconnues (a et b) et deux équations (deux contraintes sur a et b). Pour résoudre
ce système nous pouvons, par exemple, considérer la différence entre la seconde et la première
équation (ce qui permet d’éliminer le paramètre a et d’obtenir une équation avec une seule
inconnue) :

20− 10= b× (120− 160)
nous déduisons directement que b = −1

4 , puis en substituant dans la première équation
a = 10+ 160/4= 50.

La fonction de demande est donc D(p) = 50− p/4.

Exercice 2
Quand le prix est de 100 euros la quantité d’appareils photos de marque PISTOL offerte sur le
marché est 50 unités. Quand le prix est 50% plus élevé le nombre d’unités offertes est de 100.
Calculer la fonction d’offre supposée linéaire.

Correction :
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Postulons la fonction d’offre linéaire :

S(p) = a+ b× p

où p est le prix d’une montre et S(p) la quantité offerte pour ce prix, a et b sont des paramètres
réels que nous devons déterminer.

On sait que les paramètres a et b doivent satisfaire :
¨

50 = a+ b× 100

100 = a+ b× 150

la droite, pour l’instant inconnue, doit passer par les points (100,50) et (150, 100).

Pour résoudre ce système, c’est-à-dire déterminer a et b, nous pouvons, par exemple, substituer la
première équation (qui nous dit que a = 50− b× 100) dans la seconde (ce qui permet d’éliminer
le paramètre a et d’obtenir une équation avec une seule inconnue) :

100= 50− b× 100
︸ ︷︷ ︸

a

+b× 150⇔ 100= 50+ b× 50⇔ b = 1

puis on obtient la valeur de a en substituant dans la première équation : a = 50− 1× 100 = −50.

La fonction d’offre est donc S(p) = −50+ p.

Exercice 3
Sur un marché, la demande et l’offre pour un bien sont caractérisés par :

D(p) : q = −2p+ 6

S(p) : q =
1
2

p+ 1

où p est le prix du bien et q sa quantité. Calculer la quantité d’équilibre et le prix d’équilibre.

Correction :
Le prix d’équilibre p⋆ > 0, est tel que l’offre et de la demande soient égales, c’est-à-dire :

−2p⋆ + 6=
1
2

p⋆ + 1

⇔ 5=
5
2

p⋆

⇔ p⋆ = 2
On déduit les quantités échangées à l’équilibre en substituant p⋆ dans la fonction de demande :

q⋆ = D(p⋆)

⇔ q⋆ = −2× 2+ 6

⇔ q⋆ = 2
Remarque Nous aurions obtenu le même résultat sur les quantités échangées à l’équilibre en
substituant p⋆ dans la fonction d’offre puisque, par définition, en p⋆ l’offre et la demande sont
identiques.

Exercice 4
Supposons que la consommation agrégée dans une économie, notée C , soit une fonction linéaire
du revenu disponible (hors taxes), noté Y . Supposons qu’il existe un niveau de consommation
incompressible, noté C0. Il s’agit du niveau de consommation observé même si le revenu disponible
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est nul. On supposera que lorsque le revenu augmente de x , la consommation en écart à son niveau
incompressible, ie C−C0, augmente de 0, 8x . Déterminer la forme de la fonction de consommation.

Correction :
La consommation est donnée par C = C0 + aY , où le paramètre réel a est inconnu.

De façon équivalente on a C − C0 = aY .

Soit Z une variable (quelconque), on note ∆Z la variation de cette variable.

On doit avoir ∆(C − C0) = a∆Y .

On sait que si ∆Y = x alors on doit avoir ∆(C − C0) = 0,8x .

Par identification, on a directement a = 0,8 et donc :

C = C0 + 0,8Y

Exercice 5
Réorganiser les expressions en forme implicite pour les représenter sous forme explicite dans le
plan donné :

1. a x + b y = R dans le plan (0, x , y), avec a > 0 et R> 0.

2. a x + b y ⩽ R dans le plan (0, x , y).

3. xα1
1 xα2

2 = Ū dans le plan (0, x1, x2), avec α1 > 0, α2 > 0 et Ū > 0.

4.
�

α x (σ−1)/σ
1 + (1−α) x (σ−1)/σ

2

�

σ
σ−1 = Ū dans le plan (0, x1, x2), avec 0< α < 1, σ ̸= 0, σ ̸= 1 et

Ū > 0.

Correction :

1.

a x + b y = R⇔ b y = R− a x⇔ y =
R
b
−

a
b

x

C’est l’équation d’une droite.

2. a x + b y ⩽ R dans le plan (0, x , y).

a x + b y ⩽ R⇔ y ⩽
R
b
−

a
b

x

si b > 0. Cela désigne la partie du plan située sous la droite d’équation y =
R
b
− a

b x .

3.
xα1

1 xα2
2 = Ū

⇔ xα2
2 = Ū x−α1

1

⇔ x2 = Ū
1
α2 x

− α1
α2

1
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4.
�

α x (σ−1)/σ
1 + (1−α) x (σ−1)/σ

2

�

σ
σ−1 = Ū

⇔ α x (σ−1)/σ
1 + (1−α) x (σ−1)/σ

2 = Ū
(σ−1)
σ

⇔ (1−α) x (σ−1)/σ
2 = Ū

σ−1
σ −α x (σ−1)/σ

1

⇔ x (σ−1)/σ
2 =

1
(1−α)

�

Ū
σ−1
σ −α x (σ−1)/σ

1

�

⇔ x2 =
§

1
(1−α)

�

Ū
σ−1
σ −α x (σ−1)/σ

1

�

ªσ/(σ−1)

Entraînement

Exercice 6
Soit un ménage disposant d’un revenu R de 100. On suppose qu’il ne peut acheter que des bananes
et des carottes et que les prix de ces deux biens sont respectivement pB = 1 et pC =

1
2 (l’unité dans

les deux cas est le kilogramme).

1. Supposons que le ménage décide de consommer la totalité de son revenu en achetant ces deux
biens (on admet qu’il ne peut pas consommer une quantité négative de banane ou de carotte).
Déterminer l’ensemble des couples de quantités (qB, qC) cohérents avec cette hypothèse.

2. Comment cet ensemble est-il modifié si le ménage décide de ne pas consommer la totalité de
son revenu ?

3. Représenter graphiquement ces deux ensembles.

Exercice 7
L’ensemble des (x , y, z) ∈ R3 tels que











x + y + z = 3

x − y + z = 1

−x + 2y + z = 4
est :

A. (1,1, 1) B. (0,1,−1) C. (0,1, 2).

Exercice 8
L’ensemble des (x , y, z) ∈ R3 tels que











x + y + z = 3

x − y + z = 1

x + z = 4
est :

A. (1,1, 1) B. vide C. (x ,−1,4− x).

Exercice 9
Soient les fonctions d’offre et de demande :

D(p) : q = a− p

S(p) : q = b+ 2p

où a et b sont des paramètres réels positifs.
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1. Interpréter les paramètres a et b.

2. Représenter graphiquement ces fonctions.

3. Déterminer sous quelle condition un prix d’équilibre p⋆ existe. Déterminer ce prix.

Chapitre 2

TD

Exercice 10
Soit une proposition P. Montrer, à l’aide d’un tableau de vérité, que P ∧ P⇔ P et P ∨ P⇔ P.

Correction :
Montrons que P ∨ P⇔ P, c’est-à-dire que la disjonction est idempotente :

P P ∨ P P ∨ P⇔ P
V V V
F F V

Si P est vraie, alors P ∨ P est vraie quand P est vraie et fausse quand P est fausse. Ainsi la
disjonction de P avec lui même a toujours la même valeur de vérité que P et les deux propositions
sont donc équivalentes.

Montrons que P ∧ P⇔ P, c’est-à-dire que la conjonction est idempotente :

P P ∧ P P ∧ P⇔ P
V V V
F F V

Si P est vraie, alors P∧P est vraie quand P est vraie et fausse quand P est fausse. Ainsi la conjonction
de P avec lui même a toujours la même valeur de vérité que P et les deux propositions sont donc
équivalentes.

Exercice 11
Soient P, Q et R trois propositions. Montrer, à l’aide d’un tableau de vérité, que :

1. P ∧Q⇔Q ∧ P

2. P ∨Q⇔Q ∨ P

3. (P ∧Q)∧ R⇔ P ∧ (Q ∧ R)

4. (P ∨Q)∨ R⇔ P ∨ (Q ∨ R)

5. (P ∧Q)∨ R⇔ (P ∨ R)∧ (Q ∨ R)

6. (P ∨Q)∧ R⇔ (P ∧ R)∨ (Q ∧ R)

Correction :
1. Montrons que la conjonction est commutative (on se souvient qu’une conjonction est vraie si et
seulement si les deux propositions sont vraies) :
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P Q P ∧Q Q ∧ P
V V V V
V F F F
F V F F
F F F F

On observe que les troisième et quatrième colonnes ont toujours la même valeur sur chaque ligne,
les deux propositions associées P ∧Q et Q ∧ P sont donc équivalentes.

2. Montrons que la disjonction est commutative (on se souvient qu’une disjonction est vraie si et
seulement si au moins une des deux propositions est vraie) :

P Q P ∨Q Q ∨ P
V V V V
V F V V
F V V V
F F F F

On observe que les troisième et quatrième colonnes ont toujours la même valeur sur chaque ligne,
les deux propositions associées P ∨Q et Q ∨ P sont donc équivalentes.

3. Montrons que la conjonction est associative, c’est-à-dire que (P ∧Q)∧ R⇔ P ∧ (Q ∧ R) :

P Q R P ∧Q (P ∧Q)∧ R Q ∧ R P ∧ (Q ∧ R)
V V V V V V V
V V F V F F F
V F V F F F F
V F F F F F F
F V V F F V F
F V F F F F F
F F V F F F F
F F F F F F F

On note que la cinquième et la septième colonnes sont identiques, d’où l’équivalence des proposi-
tions (P ∧Q)∧ R et P ∧ (Q ∧ R).

4. Montrons que la disjonction est associative, c’est-à-dire que (P ∨Q)∨ R⇔ P ∨ (Q ∨ R) :

P Q R P ∨Q (P ∨Q)∨ R Q ∨ R P ∨ (Q ∨ R)
V V V V V V V
V V F V V V V
V F V V V V V
V F F V V F V
F V V V V V V
F V F V V V V
F F V F V V V
F F F F F F F
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On note que la cinquième et la septième colonnes sont identiques, d’où l’équivalence des proposi-
tions (P ∨Q)∨ R et P ∨ (Q ∨ R).

5. Montrons que la disjonction est distributive par rapport à la conjonction, c’est-à-dire que
(P ∧Q)∨ R⇔ (P ∨ R)∧ (Q ∨ R) :

P Q R P ∧Q (P ∧Q)∨ R P ∨ R Q ∨ R (P ∨ R)∧ (Q ∨ R)
V V V V V V V V
V V F V V V V V
V F V F V V V V
V F F F F V F F
F V V F V V V V
F V F F F F V F
F F V F V V V V
F F F F F F F F

On note que la cinquième et huitième colonnes sont identiques, les propositions (P ∧Q)∨ R et
(P ∨ R)∧ (Q ∨ R) sont donc équivalentes.
6. Montrons que la conjonction est distributive par rapport à la disjonction, c’est-à-dire que
(P ∨Q)∧ R⇔ (P ∧ R)∨ (Q ∧ R) :

P Q R P ∨Q (P ∨Q)∧ R P ∧ R Q ∧ R (P ∧ R)∨ (Q ∧ R)
V V V V V V V V
V V F V F F F F
V F V V V V F V
V F F V F F F F
F V V V V F V V
F V F V F F F F
F F V F F F F F
F F F F F F F F

On note que la cinquième et huitième colonnes sont identiques, les propositions (P ∧Q)∨ R et
(P ∨ R)∧ (Q ∨ R) sont donc équivalentes.

Exercice 12
Soient P, Q et R trois propositions. Montrer la transitivité de l’implication logique, c’est-à-dire que :

((P ⇒Q)∧ (Q⇒ R))⇒ (P ⇒ R)

Correction :

P Q R P ⇒Q Q⇒ R (P ⇒Q)∧ (Q⇒ R) P ⇒ R ((P ⇒Q)∧ (Q⇒ R))⇒ (P ⇒ R)
V V V V V V V V
V V F V F F F V
V F V F V F V V
V F F F V F F V
F V V V V V V V
F V F V F F V V
F F V V V V V V
F F F V V V V V
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Les colonnes 6 et 7 sont différentes, (P ⇒Q)∧ (Q⇒ R) et P ⇒ R ne sont donc pas des propositions
équivalentes.

(P ⇒Q)∧ (Q⇒ R) est une condition suffisante pour P ⇒ R, mais il ne s’agit pas d’une condition
nécessaire.

On obtient la dernière colonne en utilisant la définition de l’implication logique.

Exercice 13
Soient P et Q deux propositions. Exprimer l’équivalence logique en termes d’implication logique,
en établissant que :

(P⇔Q)⇔ (P ⇒Q)∧ (Q⇒ P)

Correction :

P Q P⇔Q P ⇒Q Q⇒ P (P ⇒Q)∧ (Q⇒ P)
V V V V V V
V F F F V F
F V F V F F
F F V V V V

Puisque les colonnes 3 et 6 ont les mêmes valeurs de vérité sur chaque ligne les propositions
P⇔Q et (P ⇒Q)∧ (Q⇒ P) sont équivalentes.

Exercice 14
Montrer que l’implication logique suivante :

(10n + 1 est divisible par 9)⇒ (10n+1 + 1 est divisible par 9)

est vraie, avec n ∈ N. Que pensez vous de ces propositions ?

Correction :
Notons Pn la proposition « 10n est divisible par 9 » (avec n ∈ N).

Montrons que la proposition Pn⇒ Pn+1 est vraie.

Si Pn alors il existe k ∈ N tel que 10n + 1= 9k.

Notons qu’il est possible d’écrire Pn+1 en fonction de Pn. En effet, on a :

10n+1 + 1= 10 (10n + 1)− 10+ 1

= 10 (10n + 1)− 9

Si Pn alors on sait que l’on peut trouver un entier k tel que l’on puisse remplacer 10n+ 1 par 9k, et
donc :

10n+1 + 1= 9(10k− 1)
10n+1 + 1 est donc nécessairement divisible par 9.

Pn ⇒ Pn+1 est une proposition vraie, pourtant Pn et Pn+1 sont des propositions fausses (essayer
avec n= 0).

Exercice 15
Montrer les propositions suivantes par récurrence :
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1.
∑n

i=1 i = n(n+1)
2 .

2.
∑n

i=1 i2 = n(n+1)(2n+1)
6 .

3.
∑n

i=1 x i−1 = 1−xn

1−x , avec x un réel différent de 1.

Correction :
1. Notons Pn la proposition

∑n
i=1 i = n(n+1)

2 .

P1 est vraie, en effet on a bien 1×(1+1)
2 = 1

Supposons que Pn est une proposition vraie et montrons que Pn+1 est vraie, c’est-à-dire que l’on
doit avoir :

n+1
∑

i=1

i =
(n+ 1)(n+ 2)

2
On exprime la somme jusqu’à n+ 1 en fonction de la somme jusqu’à n :

n+1
∑

i=1

i =
n
∑

i=1

i + (n+ 1)

On utilise Pn (supposée vraie) :
n+1
∑

i=1

i =
n(n+ 1)

2
+ (n+ 1) =

n(n+ 1) + 2(n+ 1)
2

=
(n+ 1)(n+ 2)

2

Pn+1 est donc nécessairement vraie si Pn est vraie.

Pn est vraie pour tout n ∈ N.

2. Notons Pn la proposition
∑n

i=1 i2 = n(n+1)(2n+1)
6 .

P1 est vraie, en effet on a bien 1×(1+1)×(2×1+1)
6 = 1

Supposons que Pn est une proposition vraie et montrons que Pn+1 est vraie, c’est-à-dire que l’on
doit avoir :

n+1
∑

i=1

i =
(n+ 1)(n+ 2)(2n+ 3)

6
On exprime la somme jusqu’à n+ 1 en fonction de la somme jusqu’à n :

n+1
∑

i=1

i2 =
n
∑

i=1

i2 + (n+ 1)2

On utilise Pn (supposée vraie) :
n+1
∑

i=1

i2 =
n(n+ 1)(2n+ 1)

6
+ (n+ 1)2

=
(n+ 1) [n(2n+ 1) + 6(n+ 1)]

6
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On fait apparaître (n+ 2) dans le dernier facteur :
n+1
∑

i=1

i2 =
(n+ 1) [(n+ 2)(2n+ 1)−2(2n+ 1) + 6(n+ 2)−6]

6

=
(n+ 1) [(n+ 2)(2n+ 7)−4n− 8]

6

=
(n+ 1) [(n+ 2)(2n+ 7)− 4(n+ 2)]

6

=
(n+ 1)(n+ 2)(2n+ 3)

6
Pn+1 est donc nécessairement vraie si Pn est vraie.

Pn est vraie pour tout n ∈ N.

3. Notons Pn la proposition
∑n

i=1 x i−1 = 1−xn

1−x pour x ̸= 0.

P1 est vraie, en effet on a bien 1−x
1−x = 10

Supposons que Pn est une proposition vraie et montrons que Pn+1 est vraie, c’est-à-dire que l’on
doit avoir :

n+1
∑

i=1

x i−1 =
1− xn+1

1− x
On exprime la somme jusqu’à n+ 1 en fonction de la somme jusqu’à n :

n+1
∑

i=1

x i−1 =
n
∑

i=1

x i−1 + xn

On utilise Pn (supposée vraie) :
n+1
∑

i=1

x i−1 =
1− xn

1− x
+ xn =

1− xn + (1− x)xn

1− x
=

1− xn+1

1− x

Pn+1 est donc nécessairement vraie si Pn est vraie.

Pn est vraie pour tout n ∈ N.

Entraînement

Exercice 16
Soient P, Q et R trois propositions, et P la proposition contraire de P. Montrer, à l’aide d’un tableau
de vérité, que :

1. P ∧Q⇔ P ∨Q

2. P ∨Q⇔ P ∧Q

3. (P ⇒Q)⇔ (P ∨Q).

4. (P ⇒Q)⇔ (P ∧Q).

5. (P ⇒Q)⇔ (Q⇒ P).

Exercice 17
Montrer par récurrence :
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1.
∑n

i=2
1

(i−1)i = 1− 1
n .

2.
∑n

k=1
1

k(k+1) =
n

n+1

3.
∑n

k=1 (2k− 1) = n2

4.
∑n

k=1 k3 = n2(n+1)2

4

5.
∑n

i=1 i(i + 1) = n(n+1)(n+2)
3

Chapitre 3

TD

Exercice 18
Soient les ensembles :

A= {x ∈ N|x est un multiple de 2}
B = {x ∈ N|x est un multiple de 3}
C = {x ∈ N|x est un multiple de 6}
D = {x ∈ N|x est un multiple de 8}

Déterminer les ensembles A∩ B, A∩ C , A∪ C , B ∪ C , C ∩ D.

Correction :
1. A∩ B est l’ensemble des multiples de 2 et 3 :

A= {2,4, 6,8, 10,12, 14,16, 18,20, . . .}
B = {3,6, 9,12, 15,18, 21, . . .}

A∩ B = {6,12, 18, . . .}= {x ∈ N|x est un multiple de 6}= C
2. A∩ C = C car C ⊂ A.

3. A∪ C = A car C ⊂ A.

4. B ∪ C = B car C ⊂ B.

5. C ∩ D est l’ensemble des multiples de 6 et 8 :

C = {6,12, 18,24, 30,36, 42,48, 54,60, 66,72, . . .}
D = {8,16, 24,32, 40,48, 56,64, 72,80, 88,96, . . .}

C ∩ D = {24,48, 72, . . .}

Exercice 19
Soient A et B deux sous ensembles de Ω. Illustrer avec des diagrammes de Venn les deux règles de
Morgan :

A∩ B = A∪ B
A∪ B = A∩ B

Correction :
• L’ensemble A∩ B correspond à la surface dans la lentille (en blanc dans la figure 1.1.a), A∩ B

correspond à tout ce qui n’est pas dans la lentille (en gris dans la figure 1.1.a).
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• L’ensemble A∪ B est l’union des surfaces grisées dans les figures 1.1.b et 1.1.c, qui est identique
à la surface grisée dans la figure 1.1.a.

F I G U R E 1.1 – Diagramme de Venn et loi de Morgan

• L’ensemble A∪B correspond à la surface dans la « double patate » (en blanc dans la figure 1.2.a,
A∪ B correspond à tout ce qui n’est pas dans la « double patate » (en gris dans la figure 1.2.a).

• L’ensemble A∩ B est l’intersection des surfaces grisées dans les figures 1.2.b et 1.2.c, qui est
identique à la surface grisée dans la figure 1.2.a.

F I G U R E 1.2 – Diagramme de Venn et loi de Morgan

Exercice 20
Soient les ensembles A= {a, b}, B = {1, 3} et C = {4,5}. Déterminer les ensembles suivants :

1. A× (B ∪ C)

2. (A× B)∪ (A× C)

3. A× (B ∩ C)

4. (A× B)∩ (A× C)

Correction :
A× (B ∪ C) = {a, b} × {1, 3,4, 5}

A× (B ∪ C) =
�

(a, 1), (a, 3), (a, 4), (a, 5)

(b, 1), (b, 3), (b, 4), (b, 5)
	

On a :
A× B =
�

(a, 1), (a, 3), (b, 1), (b, 3)
	

et
A× C =
�

(a, 4), (a, 5), (b, 4), (b, 5)
	

puis :
(A× B)∪ (A× C) =

�

(a, 1), (a, 3), (a, 4), (a, 5), (b, 1), (b, 3), (b, 4), (b, 5)
	

= A× (B ∪ C)
→ Distributivité du produit cartésien par rapport à l’union.
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Exercice 21
Soit E un ensemble tel que Card(E) = 30. Si A et B sont deux sous ensembles de E non disjoints
(ie A∩ B ̸= ;) tels que Card(A) = 20, Card(B) = 15 et Card(A∩ B) = 6. Déterminer Card(A∪ B).

Correction :
On utilise :

Card(A∪ B) = Card(A) +Card(B)−Card(A∩ B)
En remplaçant les valeurs fournies dans l’énoncé, on obtient :

Card(A∪ B) = 20+ 15− 6= 29

Exercice 22
Les résultats d’une entreprise ont montré que sur 50 employés, 30 sont obèses, 25 souffrent d’hy-
pertension artérielle tandis que 20 ont un taux de cholestérol trop élevé. Parmi les 25 qui souffrent
d’hypertension, 12 ont un taux de cholestérol trop élevé ; 15 obèses souffrent d’hypertension et 10
obèses souffrent d’un taux de cholestérol trop élevé ; finalement, 5 employés souffrent de ces trois
maux à la fois. Déterminer le nombre d’employés bien portant.

Correction :
On commence par traduire l’énoncé. On note O l’ensemble des obèses,H l’ensemble des salariés
avec de l’hypertension et C l’ensemble des salariés avec du cholestérol.

On sait que :
• Card(O ) = 30, Card(H ) = 25, Card(C ) = 20.
• Card(H ∩C ) = 12, Card(H ∩O ) = 15, Card(C ∩O ) = 10
• Card(H ∩C ∩O ) = 5

On peut déduire :
• Card((O ∩H ) \ C ) = 15 − 5 = 10, Card((O ∩ C ) \ H ) = 10 − 5 = 5, Card(O \ C \H ) =

30− 10− 5− 5= 10
• Card((H ∩C ) \ O ) = 12− 5= 7, Card(H \C \O ) = 25− 10− 5− 7= 3
• Card(C \H \O ) = 20− 5− 5− 7= 3

On cherche à déterminer la valeur de Card(H ∪C ∪O ), c’est-à-dire le nombre de salariés sans
aucune de ces pathologies.

Il faut compter le nombre d’éléments dansH ∪C ∪O et retrancher ce total au nombre de salariés
dans l’entreprise (50).
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F I G U R E 1.3 – Pathologies des salariés.

Seulement 7 (50− 10− 10− 5− 5− 3− 7− 3) salariés ne souffrent d’aucune des trois pathologies.

Entraînement

Exercice 23
Soient quatre ensemble A, B, C et D. Déterminer :

1. Card(A∪ B ∪ C)

2. Card(A∪ B ∪ C ∪ D)

Exercice 24
Une autoroute possède 3 sorties principales, chacune d’elle possédant elle-même deux sorties
secondaires. Quel est le nombre de façon de quitter l’autoroute?

Exercice 25
Soient 5 propositions. Combien de lignes contient le tableau de vérité ?

Chapitre 4

TD

Exercice 26
Soient les ensembles :

E1 = {(1; 2), (2; 8), (2; 3)}
E2 = {(x; y)|x ∈ R∧ x ⩽ y}
E3 = {(x; y)|x ∈ R∧ y = x2}
E4 = {(x; y)|y = x2 si 0 ⩽ x ⩽ 2, y = 3− x si 2< x < 3, y = 3 si x = 3}

Déterminez quels ensembles représentent une fonction.

Correction :
1. L’ensemble (relation binaire) E1 n’est pas une fonction car l’élément 2 possède deux images
distinctes (8 et 3).
2. L’ensemble E2 n’est pas un ensemble car chaque élément dans l’ensemble de départ possède une
infinité d’images.
3. L’ensemble E3 est une fonction (non bijective).
4. L’ensemble E4 est une fonction (non bijective).

Exercice 27
Soit la fonction :

f : R→ R
x 7→ f (x) = x2 + 2x + 4

Calculer :
f (x + h)− f (x)

h
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Interpréter cette expression.

Correction :
Nous avons :

f (x + h) = (x + h)2 + 2(x + h) + 4

= x2 + 2hx + h2 + 2x + 2h+ 4

= x2 + 2x + 4+ h2 + 2hx + 2h

et donc :
f (x + h)− f (x) = h2 + 2hx + 2h

puis :
f (x + h)− f (x)

h
= h+ 2x + 2

Ce ratio représente la pente de la corde de la fonction entre les points (x , f (x)) et (x +h, f (x +h)).
En toute généralité cette pente dépend de h, sauf si la fonction f est linéaire (ce n’est pas le cas
ici). Plus tard on fera tendre h vers zéro et la limite du ratio correspondra à la pente de la tangente
de la fonction au point x (la dérivée).

Exercice 28
La fonction suivante est-elle injective?

f : R→ R
x 7→ f (x) = x2 + x − 2

Correction :
Pour qu’une fonction f soit injective il faut et il suffit que deux éléments distincts dans l’ensemble
de départ aient des images distinctes par f .
Ce n’est clairement pas le cas de cette fonction, à cause du terme en x2 (parabole). Par exemple
x = 1 et x = −2 ont la même image par f (0). Ces deux valeurs de x sont les racines (évidentes)
du polynôme d’ordre 2.

Exercice 29
Soient les fonctions f (x) = x + 2 et g(x) = 2x + 5.

1. Calculer h(x) = (g ◦ f )(x) = g ( f (x)) et m(x) = ( f ◦ g)(x) = f (g(x)).

2. Calculer f −1(x) et g−1(x).

3. Calculer h−1(x) et m−1(x).

4. Calculer
�

f −1 ◦ g−1
�

(x) et
�

g−1 ◦ f −1
�

(x)

Comparer les résultats des deux dernières questions.

Correction :
1. On a :

h(x) = g( f (x)) = 2(x + 2) + 5= 2x + 9
et

m(x) = f (g(x)) = (2x + 5) + 2= 2x + 7
on note que ces deux fonctions sont différentes, la composition de fonctions n’est généralement
pas commutative.
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2. Les fonctions réciproques sont :

f −1(x) = x − 2 et g−1(x) =
1
2

x −
5
2

3. On a :

h−1(x) =
x
2
−

9
2

et m−1(x) =
x
2
−

7
2

4. On a :

f −1
�

g−1(x)
�

=
x
2
−

9
2

et g−1
�

f −1(x)
�

=
x
2
−

7
2

On a donc :

(g ◦ f )−1 = f −1 ◦ g−1

( f ◦ g)−1 = g−1 ◦ f −1

Exercice 30
Quel est le domaine de définition des fonctions suivantes ?

1. f (x) = 2
x

2. f (x) = 4+ 7
x−2

3. f (x) = 2+ 8
x2+2

4. f (x) = 17+ 3x + 1
x2−16

5. f (x) = 5− 2
x2−5x+6

Correction :
Il faut chercher les valeurs qui posent problème.

1. f (x) = 2
x : R⋆ = R \ {0}.

2. f (x) = 4+ 7
x−2 : R \ {2} pour éviter x − 2= 0.

3. f (x) = 2+ 8
x2+2 : R car ∀x , x2 + 2 ̸= 0 dans R.

4. f (x) = 17+ 3x + 1
x2−16 : R \ {−4,4} car ce sont les solutions de x2 − 16= 0.

5. f (x) = 5− 2
x2−5x+6 : R \ {2,3} car ce sont les solutions de x2 − 5x + 6= 0.

Exercice 31
Exprimer à l’aide de quantificateurs les propositions suivantes :

1. La fonction f : R→ R n’est pas nulle.

2. La fonction f : R→ R ne s’annule pas sur R.

3. La fonction f : R→ R n’est pas l’identité de R.

4. La fonction f : R→ R est croissante sur R.

5. La fonction f : R→ R n’est pas croissante sur R.

Correction :

1. ∃x ∈ R tel que f (x) ̸= 0

2. ∀x ∈ R, f (x) ̸= 0

3. ∃x ∈ R tel que f (x) ̸= x

4. ∀(x , y) ∈ R2 tel que x < y , f (x)< f (y)

5. ∃(x , y) ∈ R2 tel que x < y et f (x)⩾ f (y).
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Exercice 32
Montrer que la fonction définie sur R f (x) = x2 + 2x + 1 admet un unique minimum en x = −1.

Correction :
On reconnaît une identité remarquable :

x2 + 2x + 1= (x + 1)2

Puisque le carré d’une variable réelle est forcément positif ou nul, on sait que :

f (x)⩾ 0 ∀x ∈ R

Le carré d’un nombre est nul si et seulement si ce nombre est nul. On sait donc que f (x) est nul si
et seulement si x + 1= 0, c’est-à-dire x = −1.

Comme f (x) ne peut atteindre des valeurs négatives, la fonction f admet donc un unique minimum
en x = −1.

Exercice 33
Sur un marché, la demande et l’offre pour un bien sont caractérisés par :

D(p) : q = −2p2 + 3

S(p) : q = p2 + 5p+ 2

où p est le prix du bien et q sa quantité (on s’intéresse aux valeurs positives de p et q). Calculer la
quantité d’équilibre et le prix d’équilibre.

Correction :

Exercice 34
Montrer qu’il existe un unique polynôme d’ordre deux passant par les points (0,2), (−2,16) et
(1,4).

Correction :
On postule un polynôme d’ordre deux P(x) = ax2 + bx + c avec des coefficients réels inconnus.

Si nous pouvons déterminer de façon unique les coefficients a, b et c, alors nous aurons montré
l’existence et l’unicité d’un polynôme passant par les points (0,2), (−2, 16) et (1,4).

En évaluant le polynôme en ces points, nous savons que le polynôme doit satisfaire les équations
suivantes :










a(0)2 + b(0) + c = 2

a(−2)2 + b(−2) + c = 16

a(1)2 + b(1) + c = 4

⇔











c = 2

4a− 2b = 14

a+ b = 2

⇔











c = 2

b = 2− a

4a− 2(2− a) = 14

⇔











c = 2

b = −1

a = 3
Il existe donc un unique polynôme d’ordre deux passant par (0, 2), (−2,16) et (1,4) :

P(x) = 3x2 − x + 2

Remarque : en postulant un polynôme d’ordre 1 nous ne trouverions pas de solution, aucune
droite ne peut relier ces trois points. Nous perdrions l’unicité de la solution si nous envisagions un
polynôme d’ordre supérieur.
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Exercice 35
Calculer les racines de P(x) = x2 − 2x − 3 sans utiliser les formules usuelles.

Correction :
On utilise les deux identités remarquables utilisées en cours pour établir les formules usuelles.

On a :
P(x) = x2 − 2x + 1− 4

En exploitant (a− b)2 = a2 − 2ab+ b2, on obtient :

P(x) = (x − 1)2 − 4

En exploitant a2 − b2 = (a− b)(a+ b), on obtient :

P(x) = (x − 1− 2)(x − 1+ 2)

Finalement :
P(x) = (x − 3)(x + 1)

Les racines sont donc 3 et −1.

Exercice 36
Sans calculer le discriminant, montrer que le polynôme P(x) = x2 − 2x + 2 défini sur R n’admet
pas de solution réelle.

Correction :
On peut réécrire le polynôme sous la forme :

P(x) = x2 − 2x + 1+ 1

Ou encore, en reconnaissant l’identité remarquable (a− b)2 = a2 − 2ab+ b2 :

P(x) = (x − 1)2 + 1

Puisque le carré d’une variable réelle est nécessairement non négatif, on a :

(x − 1)2 ⩾ 0 ∀x ∈ R

et donc :
P(x)⩾ 1 ∀x ∈ R

Il n’existe donc pas de valeur de x dans R telle que P(x) = 0. Les deux racines du polynôme sont
complexes.

Exercice 37
Soit P(x) = x3 − 8x2 + 23x − 28. Déterminer les racines du polynôme P sachant que la somme de
deux des racines est égale à la troisième.

Correction :
Notons x1, x2 et x3 les racines du polynôme P. On pose x3 = x1 + x2.

Le polynôme peut se factoriser sous la forme : P(x) = (x − x1)(x − x2)(x − x3).

En développant la forme factorisée, on obtient des restrictions sur les racines. En effet :

P(x) = (x − x1)
�

x2 − x(x2 + x3) + x2 x3

�

= x3 − x2 (x1 + x2 + x3)
︸ ︷︷ ︸

8

+x (x2 x3 + x1(x2 + x3))
︸ ︷︷ ︸

23

− x1 x2 x3
︸ ︷︷ ︸

28
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On doit avoir x1 + x2 + x3 = 8 et x3 = x1 + x2, c’est-à-dire 2x3 = 8 et donc x3 = 4.

On peut donc réécrire le polynôme P sous la forme P(x) = (x − 4)Q(x) où Q(x) est un polynôme
d’ordre deux.

On peut trouver le polynôme Q(x) à l’aide d’une division euclidienne :

Il ne nous reste plus qu’à calculer les deux racines du polynôme Q(x) = x2 − 4x + 7.

Le discriminant est∆ = 16−4×7 = −12 = 12i2 = (i
p

12)2 = (i
p

4× 3)2 = (2i
p

3)2. Ce polynôme
n’admet donc pas de racines réelles, mais deux racines complexes conjuguées :

x1 =
4− 2i

p
3

2
= 2− i

p
3

et
x2 = 2+ i

p
3

Exercice 38
Chercher les solutions des équations suivantes :

1. x3 − 2x2 + 2x = 0

2. x3 + 2x2 − x − 2= 0

3. x4 − 5x2 + 4= 0

4. x2 − 2
p

2x + 2= 0

5. x3 − 4x + 3
x = 0

Correction :
1. 0 est une racine évidente du polynôme, P(0) = 0, que nous pouvons donc réécrire sous la forme :

P(x) = x(x − 2x + 2)

Pour trouver les deux autres racines, nous devons trouver les racines de Q(x) = x − 2x + 2.

Le discriminant est ∆ = 4 − 4 × 2 = −4 = (2i)2, les deux racines de Q sont donc complexes
conjuguées :

x1 =
2−
p

(2i)2

2
= 1− i

et
x2 = 1+ i

Les solutions de x3 − 2x2 + 2x = 0 sont donc 0, 1− i et 1+ i.

2. 1 est une racine évidente du polynôme, P(1) = 0, que nous pouvons donc réécrire sous la forme :

P(x) = (x − 1)Q(x)
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où Q est un polynôme d’ordre 2.

Pour trouver les deux autres racines, nous devons d’abord identifier le polynôme Q.

Nous utilisons la méthode des coefficients indéterminés (nous pourrions alternativement faire une
division euclidienne).

On postule :
Q(x) = ax2 + bx + c

où les paramètres réels a, b et c sont inconnus. Le but est d’identifier ces paramètres.

On a :
(x − 1)Q(x) = (x − 1)(ax2 + bx + c)

= ax3 + bx2 + cx − ax2 − bx − c

= ax3 + (b− a)x2 + (c − b)x − c
En comparant le développement de (x − 1)Q(x) avec la définition de P(x), on obtient le système
d’équations suivant :



















a = 1

b− a = 2

c − b = −1

c = 2

⇔











a = 1

b = 3

c = 2

Nous avons donc Q(x) = x2 + 3x + 2.

Le discriminant de Q est∆ = 9−4×2 = 1, les deux racines de Q sont x1 =
−3−1

2 = −2 et −3+1
2 = −1.

Les solutions de x3 + 2x2 − x − 2= 0 sont −2, −1 et 1.

3. 1 et −1 sont des racines évidentes...

On remarque aussi que toutes les puissances sont paires. On peut donc ici ce ramener à un polynôme
d’ordre 2 en posant z = x2 :

Q(z) = z2 − 5z + 4
Si z⋆ est une racine de Q alors ±

p
z⋆ sont des racines de P.

Le discriminant associé à Q est ∆= 25− 16= 9.

Les racines de Q sont z1 =
5−3

2 = 1 et z2 =
5+3

2 = 4.

Les solutions de x4 − 5x2 + 4= 0 sont donc −2, −1, 1 et 2.
1 et −1 sont des racines évidentes...
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On remarque aussi que toutes les puissances sont paires. On peut donc ici ce ramener à un polynôme
d’ordre 2 en posant z = x2 :

Q(z) = z2 − 5z + 4
Si z⋆ est une racine de Q alors ±

p
z⋆ sont des racines de P.

Le discriminant associé à Q est ∆= 25− 16= 9.

Les racines de Q sont z1 =
5−3

2 = 1 et z2 =
5+3

2 = 4.

Les solutions de x4 − 5x2 + 4= 0 sont donc −2, −1, 1 et 2.

4. On reconnaît une identité remarquable, (a− b)2 = a2 − 2ab+ b2, qui nous permet de factoriser
directement le polynôme P :

P(x) = (x −
p

2)2

p
2 est donc la racine de multiplicité deux du polynôme P.

p
2 est l’unique solution de l’équation x2 − 2

p
2x + 2= 0

5. L’équation n’est pas polynomiale, à cause du dernier terme, mais on peut obtenir les solutions
de cette équation en cherchant les racines d’un polynôme.

Notons que cette équation n’est pas définie en 0, à cause du dernier terme, on cherche donc des
solutions sur R⋆.

Si on multiplie les deux membres de l’équation par x cela n’affecte pas les racines. Les solutions
de l’équation sont donc aussi des solutions de :

x4 − 4x2 + 3= 0

il s’agit d’une équation polynomiale. Les racines non nulles du polynôme d’ordre quatre sont aussi
des solution du problème de départ.

On peut se ramener à une équation polynomiale d’ordre deux en posant z = x2 (car nous n’avons
ici que des puissances paires) :

z2 − 4z + 3= 0
Si z⋆ est une solution de l’équation polynomiale d’ordre deux alors ±

p
z⋆ sont des solutions de

l’équation polynomiale d’ordre quatre (et donc du problème de départ).
1 et 3 sont des solutions évidentes de l’équation polynomiale d’ordre deux.

Les solutions de l’équation polynomiale d’ordre quatre, et donc du problème d’origine, sont −
p

3,
−1, 1 et

p
3.

Ici, nous avons calculé les solutions d’une équation non linéaire en nous ramenant à une équation
polynomiale que nous savons résoudre. Ce n’est pas souvent possible...
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Exercice 39
Trouver trois entiers naturels consécutifs tels que la somme de leurs carrés est égale à 50.

Correction :
On cherche n ∈ N tel que :

n2 + (n+ 1)2 + (n+ 2)2 = 50
En développant, n ∈ N doit satisfaire :

n2 + n2 + 2n+ 1+ n2 + 4n+ 4= 50

⇔ 3n2 + 6n− 45= 0
Le discriminant associé au polynôme P(n) = 3n2 + 6n− 35 est ∆= 36+ 4× 3× 45= 476.

Les racines de P sont donc n1 =
−6−24

6 = −5 et n2 =
−6+24

6 = 3.

Comme nous cherchons n ∈ N, la seule racine pertinente est n2 = 3.

Les trois entiers naturels consécutifs sont donc 3, 4 et 5, ils vérifient 32 + 42 + 52 = 50.

Exercice 40
Une fonction f est dite paire si f (−x) = f (x) et impair si f (−x) = − f (x). Par exemple, la fonction
f (x) = x2 est paire car f (−x) = (−x)2 = (−1)2 x = x , la fonction f (x) = x3 est impaire car
f (−x) = (−x3) = (−1)3 x3 = −x3. Étudier la parité des fonctions suivantes :

1. f (x) = ex − e−x

2. g(x) = e2x−1
e2x+1

3. h(x) = ex

(ex+1)2

Correction :
1. Pour tout x ∈ R, on a :

f (−x) = e−x − ex = −
�

ex − e−x
�

= − f (x)

la fonction f est donc impaire.

Pour tout x ∈ R, on a :

g(−x) =
e−2x − 1
e−2x + 1

=
e−2x
�

1− e2x
�

e−2x (1+ e−2x)

= −
e−2x − 1
e−2x + 1

= −g(x)
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la fonction g est donc impaire.

2. Pour tout x ∈ R, on a :

h(−x) =
e−x

(e−x + 1)2

=
e−x

(e−x (1+ ex))2

=
e−x

e−2x (1+ ex)2

=
ex

(ex + 1)2
= h(x)

la fonction h est donc paire.

Exercice 41
Chercher des solutions réelles pour les équations suivantes :

1. e2x − ex − 6= 0

2. 3ex − 7e−x − 20= 0

Correction :
1. Posons u= ex , on peut alors réécrire l’équation en terme de u :

u2 − u− 6= 0

On cherche une solution positive de cette équation polynomiale, car l’exponentielle doit être
positive.

Le discriminant associé au polynôme d’ordre deux est ∆= 25. Les solutions de l’équation polyno-
miale sont donc :

u1 =
1− 5

2
= −2 et u2 =

1+ 5
2
= 3

La solution pertinente, par rapport au problème initial, est u2 = 3, car il s’agit de la seule solution
positive.

La solution du problème original est x tel que 3 = ex , c’est-à-dire (en appliquant la fonction
réciproque de l’exponentielle) x = ln 3 .

2. Comme dans le cas précédent, posons u= ex , on peut alors réécrire l’équation en terme de u :

3u−
7
u
− 20= 0

Les solutions de cette équation sont aussi les solutions de (en multipliant l’équation par u) :

3u2 − 20u− 7= 0

En suivant la démarche habituelle on montre facilement que les solutions sont :

u1 = −
1
3

et u2 = 7

La solution pertinente, par rapport au problème initial, est u2 = 7, car il s’agit de la seule solution
positive.
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La solution du problème original est donc x = ln7.

Exercice 42
Résoudre en x et y les systèmes d’équations suivants :

(i)

¨

ex e y = 10

ex−y = 2
5

(ii)

¨

ex − 2e y = −5

3ex + e y = 13
(ii)

¨

5ex − e y = 19

ex+y = 30

Correction : (i) En appliquant le logarithme népérien aux deux équations, on peut réécrire le
système sous la forme :

¨

x + y = ln 10

x − y = ln 5− ln 2
En notant que 10= 5× 2, on peut réécrire la première équation :

¨

x + y = ln 5+ ln 2

x − y = ln 5− ln 2

La solution est donc :
¨

x = ln5

y = ln2

(ii) On pose u= ex et v = e y et cherche à résoudre le système suivant par rapport à u et v :
¨

u− 2v = −5

3u+ v = 13

On trouve :
¨

u = 3

v = 4
La solution est donc :

¨

x = ln3

y = ln4

(iii) En utilisant le même changement de variable, on obtient le système suivant :
¨

5u− v = 19

uv = 30

En substituant la seconde équation dans la première on élimine v de la première équation et trouve
que u doit être solution de :

5u−
30
u
= 19

ou, de façon équivalente, solution de :

5u2 − 19u− 30= 0

Le polynôme d’ordre deux en u possède deux racines réelles distinctes dont une seule positive
u2 = 5 (on ne peut considérer la racine négative car u, comme v, doit être positif).

L’unique solution pertinente du système transformé est donc u= 5 et v = 30/5= 6.

La solution du problème original est donc x = ln5 et y = ln6.
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Exercice 43
Chercher les solutions réelles pour les équations suivantes :

1. ln(x2 − 1)− ln(2x − 1) + ln2= 0

2. ln(x + 2)− ln(x + 1) = ln(x − 1)

Correction : 1. Il convient d’abord de s’interroger sur l’ensemble des valeurs possibles de x .

Il faut que x soit tel que x2 − 1> 0 et 2x − 1> 0 (car le logarithme d’un nombre négatif n’est pas
défini dans R).

¨

x2 − 1 > 0

2x − 1 > 0
⇔

¨

x2 > 1

x > 1
2

⇔

¨

x > 1∨ x < −1

x > 1
2

Il faut donc que x soit strictement supérieur à 1 pour que l’équation ait un sens.

En exploitant les propriétés du logarithme, on peut réécrire l’équation sous la forme :

ln
x2 − 1
2x − 1

= ln
1
2

Puis en appliquant la fonction exponentielle :

x2 − 1
2x − 1

=
1
2

⇔ 2x2 − 2= 2x − 1

⇔ 2x2 − 2x − 1= 0
Le discriminant du polynôme d’ordre deux est ∆= 12.

Les racines du polynôme sont :

x1 =
2− 2
p

3
4

et x2 =
2+ 2
p

3
4

x2 est la seule racine pertinente car x1 < 1.

La solution de ln(x2 − 1)− ln(2x − 1) + ln 2= 0 est x = 1+
p

3
2 .

2. Pour que l’équation ait un sens il faut que x > 1.

En exploitant les propriétés du logarithme et en appliquant la fonction exponentielle, on peut
réécrire l’équation sous la forme :

x + 2
x + 1

= x − 1

⇔ x + 2= x2 − 1

⇔ x2 − x − 3= 0
Les solutions de cette équation polynomiale sont x1 =

1−
p

13
2 et x2 =

1+
p

13
2 .

x2 est la seule solution pertinente, car x1 < 1.
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Entraînement

Exercice 44
Soit la fonction f définie sur R par f (x) = ln(x +

p
x2 + 1). Etudier son sens de variation. Définir

que c’est une bijection et calculer sa fonction réciproque.

Exercice 45
Déterminer les solutions de l’équation suivante :

1. x2 − 4x
p

2+ 6= 0.

2. x2 + x + 1= 0.

Exercice 46
Soit la fonction suivante : ∀x ∈ R, f (x) = x3 − 7x2 + 14x − 8. Résoudre f (x) = 0.

Exercice 47
Soit la fonction f (x) = x2 + 2x + 2 définie pour toutes valeurs de x dans R. Identifier x⋆ qui
minimise f puis calculer f (x⋆).

Exercice 48
Calculer (x + 2)5 directement puis avec le binôme de Newton.

Exercice 49
Déterminer les ensembles de définition des fonctions suivantes :

1. f (x) = 3x4 − 7x3 + 8x − 2

2. f (x) = 17x2 −
p

x

3. f (x) =
p

x2 + 1

4. f (x) = 8
x −

7
x3

5. f (x) = 2+x
2−x

6. f (x) = x2−7
x−3

7. f (x) =
q

1−x
x2+2 .

Chapitre 5

TD

Exercice 50
Déterminer les limites des fonctions suivantes :

1. limx→∞
x2

ex

2. limx→∞
ln x

x

3. limx→∞
ex+3x2

4ex+2x2

4. limx→1
3x ln x
x2−x
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Correction :
1.

lim
x→+∞

x2

ex
=
+∞
+∞

= forme indéterminée

- soit par le théorème des croissances comparées : l’exponentielle l’emporte sur la puissance :

lim
x→+∞

x2

ex
= 0+

- soit par le théorème de l’Hospital (TH) : on prend les dérivées du numérateur et du dénominateur
jusqu’à trouver une forme non indéterminée.

lim
x→+∞

x2

ex

T H
= lim

x→+∞

2x
ex
=
+∞
+∞

= forme indéterminée

T H
= lim

x→+∞

2
ex
=

2
+∞

= 0+

2.

lim
x→+∞

ln(x)
x
=
+∞
+∞

= forme indéterminée

- soit par le théorème des croissances comparées : la puissance l’emporte sur le logarithme :

lim
x→+∞

ln(x)
x
= 0+

- soit par le théorème de l’Hospital (TH) :

lim
x→+∞

ln(x)
x

T H
= lim

x→+∞

1/x
1
= lim

x→+∞

1
x
= 0+

3.

lim
x→+∞

ex + 3x2

4ex + 2x2
=
+∞
+∞

= forme indéterminée

- soit par le théorème des croissances comparées :

ex + 3x2

4ex + 2x2
=

ex(1+ 3x2

ex )

ex(4+ 2x2

ex )
=

1+

→0
︷︸︸︷

3x2

ex

4+
2x2

ex
︸︷︷︸

→0

→
x→+∞

1
4

- soit par le théorème de l’Hospital (TH) :

lim
x→+∞

ex + 3x2

4ex + 2x2

T H
= lim

x→+∞

ex + 6x
4ex + 4x

=
+∞
+∞

= forme indéterminée

T H
= lim

x→+∞

ex + 6
4ex + 4

=
+∞
+∞

= forme indéterminée

T H
= lim

x→+∞

ex

4ex
=

1
4
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4.

lim
x→+∞

3x ln(x)
x2 − x

= lim
x→+∞

3 ln(x)
x − 1

=
+∞
+∞

= forme indéterminée

- soit par le théorème des croissances comparées :

lim
x→+∞

3 ln(x)
x − 1

=
x(3 ln(x)

x )

x(1− 1
x )
=

→0
︷ ︸︸ ︷

3 ln(x)
x

1−
1
x
︸︷︷︸

→0

→
x→+∞

0

- soit par le théorème de l’Hospital (TH) :

lim
x→+∞

3 ln(x)
x − 1

T H
= lim

x→+∞

3/x
1
= lim

x→+∞

3
x
= 0+

Exercice 51
Identifier les limites suivantes :

1. limx→∞
2x+5
x2−3

2. limx→∞
x3−4x2+8

x2+6

3. limx→∞
ax2+bx+c
kx2+l x+m

4. limx→−4
x2−16
x+4

5. limx→0+
|x |
x et limx→0−

|x |
x

6. limx→∞
p

x2 + 1−
p

x2 − 1

7. limx→∞
p

x2 + 4x − x

8. limx→−2
x3+2x2−x−2

x2−4

Correction :
1.

lim
x→∞

2x + 5
x2 − 3

= lim
x→∞

x(2+ 5
x )

x(x − 3
x )

= lim
x→∞

2+ 5
x

x − 3
x

=
2+ limx→∞

5
x

limx→∞ x − limx→∞
3
x

=
2

limx→∞ x
= 0
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2.

lim
x→∞

x3 − 4x2 + 8
x2 + 6

= lim
x→∞

x2(x − 4+ 8
x2 )

x2(1+ 6
x2 )

= lim
x→∞

x − 4+ 8
x2

1+ 6
x2

=
limx→∞ x − 4+ limx→∞

8
x2

1+ limx→∞
6
x2

=
limx→∞ x − 4

1
=∞

3.

lim
x→∞

ax2 + bx + c
kx2 + l x +m

= lim
x→∞

x2(a+ b
x +

c
x2 )

x2(k+ l
x +

m
x2 )

= lim
x→∞

a+ b
x +

c
x2

k+ l
x +

m
x2

= lim
x→∞

a+ limx→∞
b
x + limx→∞

c
x2

k+ limx→∞
l
x + limx→∞

m
x2

=
a
k

Il faut bien sûr supposer que k ̸= 0, sinon la fonction diverge vers +∞.
4.

lim
x→−4

x2 − 16
x + 4

= lim
x→−4

(x − 4)(x + 4)
x + 4

= lim
x→−4
(x − 4)

= lim
x→−4

x − 4

= −8
5.
x → 0+ ⇒ x > 0 et donc |x |= x .

lim
x→0+

|x |
x
= lim

x→0+

x
x
= 1

x → 0− ⇒ x < 0 et donc |x |= −x .

lim
x→0−

|x |
x
= lim

x→0+
−

x
x
= −1

6.
p

x2 + 1−
p

x2 − 1=
�p

x2 + 1−
p

x2 − 1
�

p
x2 + 1+

p
x2 − 1

p
x2 + 1+

p
x2 − 1

=
x2 + 1− (x2 − 1)
p

x2 + 1+
p

x2 − 1

=
2

p
x2 + 1+

p
x2 − 1

Puisqu’au dénominateur nous avons la somme de deux racines carrées qui tendent vers l’infini
lorsque x tend vers l’infini, on conclut que limx→∞

p
x2 + 1−

p
x2 − 1= 0.
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7.
p

x2 + 4x − x =
�
p

x2 + 4x − x
�

p
x2 + 4x + x
p

x2 + 4x + x

=
4x

p
x2 + 1+ x

=
4x

x
q

1+ 1
x + x

En effet nous ne nous intéressons qu’aux valeurs positives de x , puisque nous considérons la limite
quand x tend vers +∞.

p

x2 + 4x − x =
4
q

1+ 1
x + 1

et donc :
lim

x→∞

p

x2 + 4x − x = 2

8. Remarque : Pour x = −2 le numérateur et le dénominateur sont nuls !

⇒ On peut factoriser x + 2 au dénominateur et au numérateur.

On a x2 − 4= (x − 2)(x + 2) (identité remarquable).

Par la méthode des coefficients indéterminés ou division euclidienne (voir le chapitre II) on montre
que :

x3 + 2x2 − x − 2= (x + 2)
�

x2 − 1
�

On a donc :

lim
x→−2

x3 + 2x2 − x − 2
x2 − 4

= lim
x→−2

x2 − 1
x − 2

= −
3
4

Exercice 52
Soit la fonction à valeurs réelles définie par morceaux :

f (x) =











6x + 8 si x ⩽ −1

−3x + 7 si − 1< x < 2

x − 1 sinon.

Cette fonction est-elle continue sur R?

Correction : Pour que cette fonction soit définie sur R il faut et il suffit qu’elle soit continue en -1 et
2, puisque les morceaux sont des droites (c’est-à-dire des fonctions continues).

Pour que la fonction soit continue en 2, il faut que limx→2+ f (x) = limx→2− f (x) = f (2). On a
f (2) = 2− 1= 1, et :

lim
x→2−

f (x) = −3× 2+ 7= 1 on considère la deuxième branche avecx < 2

puis
lim

x→2+
f (x) = 2− 1= 1 on considère la troisième branche avecx ⩾ 2

Donc la fonction est continue en x = 2.
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Mais elle n’est pas continue en x = −1. En effet, nous avons f (−1) = 2 et :

lim
x→−1+

f (x) = −3× (−1) + 7= 10

lim
x→−1−

f (x) = 6× (−1) + 8= 2

Cette fonction n’admet pas de limite en -1 puisque les limites à droites et à gauche sont différentes.
La fonction n’est donc pas continue en -1.

Exercice 53
Soit la fonction à valeurs réelles définie par morceaux :

f (x) =

¨

ax2 + bx + 1 si x ⩽ 2

x2 + ax + b sinon.

Donner les conditions sur les paramètres a et b pour que la fonction soit continue sur R?

Correction :
Pour que cette fonction soit définie sur R il faut et il suffit qu’elle soit continue en 2, puisque les
morceaux sont des fonctions polynomiales d’ordre 2 (c’est-à-dire continues).

Pour que la fonction soit continue en 2, il faut que limx→2+ f (x) = limx→2− f (x) = f (2). On a
f (2) = 4a+ 2b+ 1. Par ailleurs, on a :

lim
x→2−

f (x) = 4a+ 2b+ 1

puis
lim

x→2+
f (x) = 4+ 2a+ b

Pour que la fonction soit continue en x = 2 et donc sur R, il faut et il suffit que :

4a+ 2b+ 1= 4+ 2a+ b

ou de façon équivalente :
b = 3− 2a

Exercice 54
Soit la fonction f sur R à valeurs réelles, définie par :

f (x) =

¨

1
ln |x | si x /∈ {−1,0, 1}
0 sinon

En quels points la fonction f est-elle continue?

Correction :
La fonction est continue en tout point différent de -1, 0 ou 1, car il s’agit d’une composition de
fonctions continues (la valeur absolue, le logarithme et l’inverse).

En zéro la fonction est continue car :

lim
x→0

f (x) = lim
u→−∞

1
u
= 0= f (0)

puisque limx→0 ln |x |= −∞.

En x = 1 la fonction n’est pas continue. En effet, on a :
¨

limx→1+ ln |x | = 0+

limx→1− ln |x | = 0−
⇒

¨

limx→1+ f (x) =∞
limx→1− f (x) = −∞
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La fonction n’admet pas de limite en x = 1 la fonction n’est donc pas continue. De plus, les limites
à droite et à gauche sont différentes de f (1).

Même argument pour x = −1.

Exercice 55
Soit la fonction définie sur R \ {−1} :

f (x) =
1+ x
x3 + 1

Cette fonction est-elle continue en −1 ? Est-il possible de la prolonger par continuité en −1 ?

Correction : On a une forme indéterminée 0/0 en -1.

Calculons, si elle existe, la limite de f quand x tend vers -1.

Puisque -1 est une racine du polynôme au dénominateur, on montre facilement que celui-ci peut
s’écrire sous la forme (x + 1)

�

x2 − x + 1
�

(par la méthode des coefficients indéterminés par
exemple).

On a donc :

lim
x→−1

f (x) = lim
x→−1

1
x2 − x + 1

=
1
3

Nous pouvons donc prolonger f :

f̄ (x) =

¨

f (x) si x ̸= 1
1
3 sinon.

Exercice 56
En utilisant la définition de la dérivée, calculer les dérivées des fonctions suivantes :

1. f (x) = 4x2 + 3

2. g(x) = xn, ∀n ∈ N et ∀x ∈ R

3. h(x) = 1
x , ∀x ∈ R⋆

4. j(x) =
p

1+ x

Pour g(x) vous utiliserez la formule du binôme de Newton :

(a+ b)n =
n
∑

k=0

C k
n an−k bk

avec

C k
n =

n!
k!(n− k)!

où m!= m× (m− 1)× (m− 2)× · · · × 3× 2× 1 la fonction factorielle.

Correction :
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1.

f ′(x) = lim
h→0

f (x + h)− f (x)
h

= lim
h→0

4(x + h)2 + 3− 4x2 + 3
h

= lim
h→0

4(x2 + 2xh+ h2)− 4x2

h

= lim
h→0

8xh+ h2

h
= 8x + lim

h→0
h

= 8x

2.

g ′(x) = lim
h→0

(x + h)n − xn

h

= lim
h→0

∑n
k=0 C k

n xn−khk − xn

h

= lim
h→0

∑n
k=1 C k

n xn−khk

h

= lim
h→0

n
∑

k=1

C k
n xn−khk−1

= C1
n xn−1

= nxn−1

3.

h′(x) = lim
h→0

1
x+h −

1
x

h

= lim
h→0

x−x−h
x(x+h)

h

= lim
h→0

−1
x(x + h)

= −
1
x2

4.

j′(x) = lim
h→0

p
x + h+ 1−

p
x + 1

h

= lim
h→0

p
x + h+ 1−

p
x + 1

h

p
x + h+ 1+

p
x + 1

p
x + h+ 1+

p
x + 1

= lim
h→0

x + h+ 1− x − 1
h

1
p

x + h+ 1+
p

x + 1

= lim
h→0

1
p

x + h+ 1+
p

x + 1

=
1

2
p

x + 1
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Entraînement

Exercice 57
Déterminer les limites des fonctions suivantes :

1. limx→1 x2 − 3x + 7

2. limx→1
x2−1
x−1

3. limx→1
x3−8x2+19x−12

x2−3x+2

4. limx→1
x2−3x+2

x3−1

Exercice 58
Soit la fonction f définie sur R. Etudier sa continuité sur R.

f (x) =



















1
x2

e1/x ∀x ∈ ]−∞,−1/2]
4
e2

∀x ∈ ]−1/2, 1]
4
e2
+ ln x ∀x ∈ ]1,+∞]

Exercice 59
Même question pour :

f (x) =

¨

e1/(x2−1) ∀x ∈ ]−1, 1[

0 ∀x ∈ ]−∞,−1]∪ [1,+∞[

Exercice 60
Même question pour :

f (x) =







1
b− a

si x ∈ [a, b]

0 sinon .

Chapitre 6

TD

Exercice 61
Soit la fonction :

f (x) =
x

1+ |x |
Calculer f ′(0) si elle existe.

Correction :
En notant que f (0) = 0, on a :

f ′(0) = lim
x→0

x
1+|x | − 0

x

= lim
x→0

1
1+ |x |

= 1
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Exercice 62
Calculer les dérivées des fonctions suivantes :

1. f (x) = ln(x2 + x4 + 1)

2. g(x) = x2 ln(x2 + x4 + 1)

3. h(x) = e2x

4. j(x) = ln
�

x3−2
x2+1

�

5. l(x) =
�

1− 1p
x

��

1+ 1p
x

�

6. p(x) = x x

Correction :
1. f (x) = ln(x2 + x4 + 1)
de la forme

[ln(U)]′ =
U ′

U
avec

U = x2 + x4 + 1
et donc

U ′ = 2x + 4x3 + 0
donc :

f ′(x) =
2x + 4x3

x2 + x4 + 1

2. g(x) = x2 ln(x2 + x4 + 1)
de la forme

(UV )′ = U ′V + UV ′

avec U = x2 et V = ln(x2 + x4 + 1)

donc U ′ = 2x et V ′ =
2x + 4x3

x2 + x4 + 1
(question 1)

Donc :

g ′(x) = (2x) ln(x2 + x4 + 1) + (x2)
�

2x + 4x3

x2 + x4 + 1

�

3. h(x) = e2x

de la forme
(eU)′ = U ′eU

avec U = 2x et U ′ = 2

Donc :
h′(x) = 2e2x

4. j(x) = ln
�

x3 − 2
x2 + 1

�

de la forme

[ln(Z)]′ =
Z ′

Z
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avec Z = x3−2
x2+1 et donc

Z ′ =
�

U
V

�′

=
U ′V − UV ′

V 2

avec U = x3 − 2 et V = x2 + 1 et donc U ′ = 3x2 et V ′ = 2x

j′(x) =

(3x2)(x2 + 1)− (x3 − 2)(2x)
(x2 + 1)2

x3 − 2
x2 + 1

= . . .

Plus simple : on voit que

j(x) = ln
�

x3 − 2
x2 + 1

�

= ln(x3 − 2)− ln(x2 + 1)

Comme la dérivée d’une somme est la somme des dérivées ((U + V )′ = U ′ + V ′), en utilisant deux
fois

[ln(Z)]′ =
Z ′

Z
il vient très facilement :

j′(x) =
3x2

x3 − 2
−

2x
x2 + 1

5.

6.

Exercice 63
Trouver l’expression générale de la dérivée d’ordre n des fonctions suivantes :

1. f (x) = eθ x

2. g(x) = 1
x

3. h(x) = ln(x)

4. i(x) = 1
1−x

5. j(x) = 1
1+x

6. k(x) = 1
1−x2

Correction :
1.

f (x) = eθ x

f ′(x) = f (1)(x) = θ eθ x car (eU)′ = U ′eU avec U = θ x et U ′ = θ

f ′′(x) = f (2)(x) = (θ eθ x)
′
= θ (eθ x)

′
= θ (θ eθ x) = θ 2eθ x

f (3)(x) = (θ 2eθ x)
′
= θ 2(eθ x)

′
= θ 2(θ eθ x) = θ 3eθ x

On peut deviner que : f (n)(x) = θ neθ x

Par récurrence? au rang n+ 1 : f (n+1)(x) = θ n+1eθ x ?

f (n+1)(x) = [ f (n)(x)]
′
= (θ neθ x)′ = θ n(eθ x)′ = θ n(θ eθ x) = θ n+1eθ x
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Si la proposition est vraie au rang n, alors elle est vraie au rang n+ 1.
Comme elle est vraie au rang 1, elle est vraie au rang 2, . . . , et de proche en proche, elle est vraie
pour tout n.
2.

g(x) =
1
x
= x−1

de la forme (xα)
′
= αxα−1.

g(1)(x) = (x−1)
′
= (−1)x−1−1 = −x−2 = −

1
x2

g(2)(x) = (−x−2)
′
= −(−2)x−2−1 = 2x−3 =

2
x3

g(3)(x) = (2x−3)
′
= 2(−3)x−3−1 = −6x−4 = −

6
x4

g(4)(x) = (−6x−4)
′
= −6(−4)x−4−1 = 24x−5 =

24
x5

Donc on devine :

g(n)(x) = (−1)n
n!

xn+1

g(n)(x) = (−1)n
n!

xn+1

Par récurrence, vraie au rang n+ 1 ? g(n+1)(x) = (−1)n+1 (n+ 1)!
xn+2

?

g(n+1)(x) = [g(n)(x)]′

=
�

(−1)n
n!

xn+1

�′

= (−1)nn!
�

x−(n+1)
�′

= (−1)nn![−(n+ 1)]x−(n+1)−1

= (−1)nn!(−1)(n+ 1)x−(n+2)

= (−1)n+1n!(n+ 1)x−(n+2)

= (−1)n+1(n+ 1)!
1

xn+2

Si la proposition est vraie au rang n, alors elle est vraie au rang n+ 1.
Comme elle est vraie au rang 1, elle est vraie au rang 2, . . . , et de proche en proche, elle est vraie
pour tout n.

3.

h(x) = ln(x)

h(1)(x) =
1
x
= g(x)

donc :

h(2)(x) = g(1)(x)
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et donc :

h(n)(x) = g(n−1)(x)

4. On a i′(x) = 1
(1−x)2 , i′′(x) = 2

(1−x)3 , i′′′(x) = 2×3
(1−x)4 , ... Plus généralement, on postule i(n)(x) =

n!
(1−x)n+1 . Pour montrer que cette formule est correcte, puisqu’elle est vraie au premiers rangs, il

suffit de montrer que i(n+1)(x) = (n+1)!
(1−x)n+2 . On a :

i(n+1)(x) =
�

i(n)(x)
�′

=
�

n!
(1− x)n+1

�′

=
(n+ 1)n!
(1− x)n+1+1

=
(n+ 1)!
(1− x)n+2

5. On a j′(x) = −1
(1+x)2 , j′′(x) = (−1)22

(1+x)3 , j′′′(x) = (−1)32×3
(1+x)4 , ... Plus généralement, on postule j(n)(x) =

(−1)nn!
(1+x)n+1 . Pour montrer que cette formule est correcte, puisqu’elle est vraie au premiers rangs, il

suffit de montrer que j(n+1)(x) = (−1)n+1(n+1)!
(1+x)n+2 . On a :

j(n+1)(x) =
�

j(n)(x)
�′

=
�

(−1)nn!
(1+ x)n+1

�′

=
(−1)(n+ 1)(−1)nn!
(1+ x)n+1+1

=
(−1)n+1(n+ 1)!
(1+ x)n+2

6. On a :

k(x) =
1

(1− x)(1+ x)
que nous pouvons réécrire sous la forme :

k(x) =
a

1− x
+

b
1+ x

il nous reste à trouver les coefficients a et b. Par identification, on trouve a+ b = 1 et a− b = 0.
On doit donc avoir a = b = 1

2 , et on peut écrire :

k(x) =
1
2

1
1− x

+
1
2

1
1+ x

On reconnaît les fonctions i(x) et j(x), on a donc directement :

k(n)(x) =
1
2

n!
(1− x)n+1

+
1
2
(−1)nn!
(1+ x)n+1

Exercice 64
Soient a, b et c trois paramètres réels. Montrer qu’il existe x ∈ [0, 1] tel que 4ax3 + 3bx2 + 2cx =
a+ b+ c.

Correction :
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On remarque que l’équation ressemble à la dérivée d’un polynôme d’ordre 4. On pose f (x) =
ax4+ bx3+ cx2− (a+ b+ c)x une fonction de [0, 1] dans R. La fonction f est dérivable et vérifie
f (0) = f (1) = 0. En appliquant le théorème de Rolle, on sait qu’il existe x entre 0 et 1 tel que
f ′(x) = 0, c’est-à-dire tel que 4ax3 + 3bx2 + 2cx = a+ b+ c.

Exercice 65
Une fonction continue sur E dont la dérivée s’annule jamais peut-elle être périodique sur E ?

Correction :
La réponse est négative. On dit qu’une fonction f est périodique (voir wikipedia) de période t sur
E si pour tout x ∈ E, x + t ∈ E on a f (x) = f (x + t). D’après le théorème de Rolle, si la fonction
est dérivable, il doit exister a entre x et x + t tel que f ′(a) = 0. Donc si la dérivée n’est jamais
nulle, la fonction ne peut pas être périodique.

Exercice 66
Soit f une fonction dérivable de R+ dans R. On suppose que f et f ′ admettent des dérivées finies
en +∞. Montrer que la limite de la dérivée doit être nulle.

Correction :
Notons l et l ′ les limites de f et f ′ en +∞. Par le théorème des accroissements finis, on sait que
pour tout x ∈ R il existe x < c(x)< x + 1 tel que :

f (x + 1)− f (x) = f ′(c(x))
�

(x + 1)− x
�

⇔ f (x + 1)− f (x) = f ′(c(x))
Puisque c(x) est dans l’intervalle [x , x + 1], on doit avoir limx→∞ c(x) =∞. On a alors :

lim
x→∞

f (x + 1)− lim
x→∞

f (x) = lim
x→∞

f ′(c(x))

⇔ l − l = lim
c(x)→∞

f ′(x)

lim
x→∞

f ′(x) = 0

La limite de f ′ doit être nulle si la limite de f est finie.

Exercice 67
Montrer qu’il est possible d’écrire la fonction exponentielle sous la forme :

ex =
∞
∑

i=0

xn

n!

En déduire une approximation de la constante e.

Correction :

f (x) = f (0) +
f (1)(0)[x − 0]

1!
+

f (2)(0)[x − 0]2

2!
+

f (3)(0)[x − 0]3

3!
+ . . .

ex =
∞
∑

i=0

x i

i!

∀i ⩾ 0, f (i)(x) = ex et f (i)(0) = e0 = 1

https://fr.wikipedia.org/wiki/Fonction_periodique
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ex = 1+ x +
x2

2!
+

x3

3!
+ . . .

=
x0

0!
+

x1

1!
+

x2

2!
+

x3

3!
+ . . .

=
∞
∑

i=0

x i

i!
si x = 1, on trouve la constante d’Euler notée e :

e1 = e =
∞
∑

i=0

1
i!
≊ 2.718281828459045

La précision de l’approximation augmente avec l’ordre du DL.

e ≊
0
∑

i=0

1
i!
= 1

≊
1
∑

i=0

1
i!
= 1+

1
1!
= 2

≊
2
∑

i=0

1
i!
= 1+

1
1!
+

1
2!
= 2.5

≊
3
∑

i=0

1
i!
= 1+

1
1!
+

1
2!
+

1
3!
= 2.6666

≊
4
∑

i=0

1
i!
= 1+

1
1!
+

1
2!
+

1
3!
+

1
4!
= 2.708333

≊
5
∑

i=0

1
i!
= 1+

1
1!
+

1
2!
+

1
3!
+

1
4!
+

1
5!
= 2.716666

. . .

Exercice 68

Montrer l’égalité suivante au voisinage de 0 :

1
1− x

=
∞
∑

i=0

x i

Correction :

1
1− x

=
∞
∑

i=0

x i

Posons
1

1− x
= (1− x)−1 et (Uα)

′
= αU

′
Uα−1 avec U = 1− x et U

′
= −1.

f (1)(x) =
�

(1− x)−1
�′

= (−1)(−1)(1− x)−1−1 = (1− x)−2 =
1

(1− x)2

f (2)(x) =
�

(1− x)−2
�′

= (−2)(−1)(1− x)−2−1 =
2

(1− x)3
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f (3)(x) =
�

2(1− x)−3
�′

= (2)(−3)(−1)(1− x)−3−1 =
2× 3
(1− x)4

=
6

(1− x)4

f (4)(x) =
�

(2× 3)(1− x)−4
�′

= (2× 3)(−4)(−1)(1− x)−4−1 =
2× 3× 4
(1− x)5

=
24

(1− x)5

On peut deviner que :

f (n)(x) =
n!

(1− x)n+1

Théorème de Taylor Young (développement limité en 0)

f (x) =
∞
∑

i=0

f (i)(0)[x − 0]i

i!

f (n)(x) =
n!

(1− x)n+1
⇔ f (i)(x) =

i!
(1− x)i+1

f (i)(0) =
i!

(1− 0)i+1
= i!

Donc :

1
1− x

=
∞
∑

i=0

f (i)(0)[x − 0]i

i!

=
∞
∑

i=0

i!
i!

x i

=
∞
∑

i=0

x i

Cela ressemble bcp au résultat sur la somme des termes d’une suite géométrique de raison x (si
|x |< 1).

Exercice 69
Faire une étude de la fonction (en identifiant les optima) :

f (x) = −x3 + x2 + 2x

Correction :
∀x ∈ R, f (x) = −x3 + x2 + 2x

On veut résoudre :

f (x) = 0⇔−x3 + x2 + 2x = 0
x = 0 est racine évidente puisqu’il n’y a pas de constante. En factorisant, il reste un polynôme du
second degré :

−x(x2 − x − 2) = 0
En utilisant la méthode du discriminant ou en trouvant les racines évidentes x = 2 et x = −1, il
reste :

−x(x − 2)(x + 1) = 0

f (x) = −x3 + x2 + 2x

f ′(x) = −3x2 + 2x + 2
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f ′(x) = 0 : polynôme du second degré, ∆= 28> 0

Les deux racines sont :
1−
p

7
3

et
1+
p

7
3

.

Le signe devant x2 étant négatif, la fonction est positive entre les racines et négatives en dehors.

En ces deux points, la dérivée s’annule et change de signes : ce sont donc des points de retournement.

Enfin on calcule les limites de f au bord de l’ensemble de définition :

lim
x→−∞

f (x) = lim
x→−∞

(−x3 + x2 + 2x) = lim
x→−∞

−x3 = +∞

lim
x→+∞

f (x) = lim
x→+∞

(−x3 + x2 + 2x) = lim
x→+∞

−x3 = −∞

Exercice 70
Faire une étude de la fonction (en identifiant les optima) :

f (x) =
(ln x)2

x

Correction :
La fonction est toujours positive.

Dérivée de la forme (U
V )
′
= U ′V−UV ′

V 2 avec U = [ln(x)]2 et V = x .

D’où V
′
= 1 et U

′
=
�

[ln(x)]2
	′

de la forme (W 2)
′
= 2W

′
W en posant W = ln(x) donc W

′
= 1

x :

U
′
=
�

[ln(x)]2
	′

= 2
ln(x)

x
Il vient :

f ′(x) =
2 ln(x)

x x − [ln(x)]2 × 1

x2

=
2 ln(x)− [ln(x)]2

x2

=
ln(x)[2− ln(x)]

x2

f ′(x) =
ln(x)[2− ln(x)]

x2
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Le signe de la dérivée dépend du signe de ln(x)[2− ln(x)]. Elle s’annule ssi
¨

ln(x) = 0⇔ eln(x) = e0⇔ x = 1

2− ln(x) = 0⇔ ln(x) = 2⇔ eln(x) = e2⇔ x = e2

Reste à calculer les limites de f au bord de l’ensemble de définition :

lim
x→0+

f (x) = +∞

lim
x→+∞

f (x) = 0+

Exercice 71
Faire une étude de la fonction (en identifiant les optima) :

f (x) =
x2

x2 − 2x + 2

Correction :
On note que le discriminant du polynôme au dénominateur est négatif, ∆= −4, il n’admet donc
pas de racines réelles. Ce polynôme est positif pour tout x ∈ R. Le domaine de définition de f est
donc R.
Puisque le numérateur est non négatif, on a f (x) ⩾ 0 et la fonction est nulle en x = 0. On
montre facilement que limx→−∞ f (x) = limx→∞ f (x) = 1, car les polynômes au numérateur et
dénominateur ont le même ordre. La dérivée est :

f ′(x) =
2x(x2 − 2x + 2)− x2(2x − 2)

(x2 − 2x + 2)2

f ′(x) =
2x(2− x)

(x2 − 2x + 2)2
La dérivée est positive si et seulement si 0< x < 2, elle est nulle en x = 0 et x = 2. La fonction f
est donc décroissante entre −∞ et 0, croissante entre 0 et 2, puis décroissante entre 2 et∞. la
fonction admet un minimum global en 0 ( f (0) = 0) et un maximum global en 2 ( f (2) = 2).

Exercice 72
Montrer que si la fonction f (x) = ax3 + bx2 + cx + d admet deux extrema, alors l’un est un
maximum et l’autre un minimum.

Correction :
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f (x) = ax3 + bx2 + cx + d

f ′(x) = 3ax2 + 2bx + c

un polynôme du second degré.

Avec la méthode du discriminant : attention à la confusion possible avec les formules automatiques
du discriminant du fait de la présence de a, b, c.

∆= (2b)2 − 4× (3a)× c = 4b2 − 12ac
Si deux extrema : ∆> 0⇒ 2 racines











x1 =
−2b−

p
∆

2× 3a
=
−2b−

p
∆

6a

x2 =
−2b+

p
∆

2× 3a
=
−2b+

p
∆

6a

Deux cas possibles selon le signe de a (les deux extrema évoqués dans l’énoncé excluent a = 0).
Si a > 0 :

lim
x→−∞

f (x) = lim
x→−∞

ax3 = a×−∞= −∞

lim
x→+∞

f (x) = lim
x→+∞

ax3 = a×+∞= +∞

Si a < 0 :
lim

x→−∞
f (x) = lim

x→−∞
ax3 = a×−∞= +∞

lim
x→+∞

f (x) = lim
x→+∞

ax3 = a×+∞= −∞

Exercice 73
Soit le prix de vente unitaire du bien fixé à p.

1. Calculer le profit du producteur si son coût total à produire est donné par C(q) = 60q+ 2q2.
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2. Pour quelle valeur de q maximisera-t-il son profit ?

Correction :

Exercice 74
La somme de deux nombres positifs est égale à 100. Trouver les couples de nombres tels que :

1. Le produit de ces nombres est maximal.

2. La somme des carrés est minimale.

Correction :
1. Soit ici :

(

max
x ,y

x y

sc : x + y = 100

C’est un programme type programme du consommateur.

(

max
x ,y

U(x , y)

sc budget : px x + py y ⩽ R

qui est un programme de maximisation d’une fonction à 2 variables sous contrainte linéaire.
Comme

x + y = 100⇔ y = 100− x
on remplace y par son expression :

max
x

x(100− x)

qui devient donc un programme de maximisation d’une fonction à 1 variable x sans contrainte.

max
x

x(100− x) = 100x − x2

En la solution x⋆, la dérivée de la fonction s’annule. On commence donc par calculer la dérivée :

d(100x − x2)
d x

= 100− 2x

puis on l’écrit en la solution donc :

100− 2x⋆ = 0

⇔2x⋆ = 100

⇔x⋆ = 50
On déduit y⋆ grâce à la contrainte :

x + y = 100

⇔x⋆ + y⋆ = 100

⇔y⋆ = 100− x⋆ = 50

2. Soit ici :
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(

min
x ,y

x2 + y2

sc : x + y = 100

C’est un programme de minimisation

(

min
x ,y

C(x , y)

sc équation linéaire

d’une fonction à 2 variables sous contrainte linéaire.
Comme x + y = 100⇔ y = 100− x , on remplace y :

min
x

x2 + (100− x)2

qui devient donc un programme de minimisation d’une fonction à 1 variable x sans contrainte.

min
x

x2 + (100− x)2 = x2 + 1002 + x2 − 200x

= 2x2 − 200x + 1002

En la solution x⋆, la dérivée de la fonction s’annule. On commence donc par calculer la dérivée :

d(2x2 − 200x + 1002)
d x

= 4x − 200

puis on l’écrit en la solution donc :

4x⋆ − 200= 0

⇔4x⋆ = 200

⇔x⋆ = 50
On déduit y⋆ grâce à la contrainte :

y⋆ = 100− x⋆ = 50

Remarques :
- La démarche est la même pour un programme de maximisation ou de minimisation. Donc

comment savoir si x⋆ est un maximum ou un minimum ?

- Il faut caractériser le signe de la dérivée seconde de la fonction (éventuellement en la solution
si elle dépend de l’inconnue) :
o si la dérivée seconde >0 : on est à un minimum
o si la dérivée seconde <0 : on est à un maximum.

- Q1 : d2(100x−x2)
d x2 =

d
�

d(100x−x2)
d x

�

d x = d(100−2x)
d x = −2< 0 donc maximum.

- Q2 : d2(2x2−200x+1002)
d x2 =

d
�

d(2x2−200x+1002)
d x

�

d x = d(4x−200)
d x = 4> 0 donc minimum.
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Entraînement

Exercice 75
Soit

f : R→ R
x 7→ f (x) = x2 + 2x + 4

La fonction f est :

A. continue sur [−1, 2] et dérivable sur ]− 1, 2[
B. continue et dérivable sur ]− 1,2[
C. continue et dérivable sur [−1,2] .

Exercice 76
La fonction f définie sur R par :

f (x) =

¨

e−
1

x2 si x ̸= 0

0 si x = 0

est-elle :

A. continue et dérivable sur R
B. continue sur R et dérivable sur R∗

C. continue et dérivable sur R∗.

Exercice 77
La fonction f définie sur R\{−1, 1} par f (x) = ln(x2−1)3 est continue et dérivable sur R\{−1, 1}.
Sa fonction dérivée f

′
est définie par :

A. 2x
x2−1 B. 6x

x2−1 C. 3x
x2−1 .

Exercice 78
La fonction f définie sur R par

f (x) =

¨

x ln |x | si x ̸= 0

0 si x = 0

est continue sur R et dérivable sur R∗.
A. f est décroissante sur [−1/e, 1/e]
B. f est croissante sur [−1/e, 0] et décroissante sur [0, 1/e]
C. f est croissante sur R+.

Exercice 79
La fonction f définie sur R par f (x) = 5−x admet pour dérivée :

A. −5−x B. −5×−5−x C. − ln5× 5−x .

Exercice 80
Soit la fonction f définie sur R. Etudier sa continuité et sa dérivabilité sur R.

f (x) = 1
x2 e1/x ∀x ∈ ]−∞,−1/2]

f (x) = 4
e2 ∀x ∈ ]−1/2, 1]

f (x) = 4
e2 + ln x ∀x ∈ ]1,+∞]
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Exercice 81
La fonction f définie sur R par

f (x) =

¨

e1/(x2−1) ∀x ∈ ]−1, 1[

0 ∀x ∈ ]−∞,−1]∪ [1,+∞[

Exercice 82
Dresser le tableau de variation de la fonction f :

f (x) =

√

√ x3

1− x

Exercice 83
Soit la fonction f définie sur R par f (x) = ln(x +

p
x2 + 1). Etudier son sens de variation. Définir

que c’est une bijection et calculer sa fonction réciproque.

Exercice 84
Supposons que la demande d’un bien soit une fonction du revenu : c(R) = 3

p
R. Calculer l’élasticité

revenu : εR =
c
′
(R)

c(R)
R

.

Exercice 85
Déterminer les ensembles de définition et calculer les dérivées des fonctions suivantes :

1. f (x) = 3x4 − 7x3 + 8x − 2

2. f (x) = 17x2 −
p

x

3. f (x) =
p

x2 + 1

4. f (x) = 8
x −

7
x3

5. f (x) = 2+x
2−x

6. f (x) = x2−7
x−3

7. f (x) =
q

1−x
x2+2 .

Exercice 86
Soit U la fonction d’utilité d’un agent. On définit l’aversion absolue pour le risque par : AU(x) =

−U
′′
(x)

U ′ (x) et l’aversion relative comme : RU(x) = −x U
′′
(x)

U ′ (x) avec x le niveau de richesse de l’agent, U
′

et U
′′

respectivement les dérivées première et seconde de la fonction U si elles existent. Calculer
les aversions absolues et relatives pour le risque pour les fonctions suivantes :

1. U(x) = ax + b

2. U(x) = ln(x)

3. U(x) = 1
1−r x1−r

4. U(x) = −e−ax

Exercice 87
Un agent économique cherche à maximiser son utilité en consommant un bien. Sa fonction d’utilité
est U(x) = ln(x)− ex−1 avec x la quantité consommée. Pour quelle quantité consommée x⋆ l’agent
maximise-t-il son utilité ?

Exercice 88
A l’aide de la formule de Taylor-Young, calculer un développement limité de :
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1. f (x) =
p

1+ x à l’ordre 3 au voisinage de 0.

2. g(x) = ln(1+ x) à l’ordre 3 au voisinage de 0.

3. h(x) =
p

1+ x + x2 à l’ordre 2 au voisinage de 0.

4. i(x) = ln(2+ 2x + x2) à l’ordre 2 au voisinage de 2.

Chapitre 7

TD

Exercice 89
Soit la suite de terme général un = un−1 + 1 pour n ⩾ 1, avec la condition initiale u1 = 1. (1)
Donner une expression de un en fonction du rang n. (2) Soit la suite vn =

∑n
i=1 ui pour n ⩾ 1.

Quelle est la condition initiale de cette suite ? Déterminer vn.

Correction : 1.
¨

un = un−1 + 1 ∀n ⩾ 2

u1 = 1
Exprimons un en fonction de n et de sa condition initiale.

On passe d’une expression du type "chaîne de nombres" un = f (un−1) à une expression du type
un = g(n, u1) uniquement en fonction du rang et de la condition initiale.

La première expression signifie :

un = un−1 + 1

un−1 = un−2 + 1

un−2 = un−3 + 1

. . .

u3 = u2 + 1

u2 = u1 + 1
On réinjecte les expressions inférieures en cascade dans la première expression.

un = un−1 + 1

un−1 = un−2 + 1

⇒ un = (un−2 + 1) + 1= un−2 + 2
Comme un−2 = un−3 + 1 :

un = un−2 + 2

= (un−3 + 1) + 2

= un−3 + 3
Comme un−3 = un−4 + 1 :
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un = un−3 + 3

= (un−4 + 1) + 3

= un−4 + 4
Et ainsi de suite.
Il faut remarquer les relations entre les nombres et les indices...

un = un−1 + 1

un = un−2 + 2

un = un−3 + 3

un = un−4 + 4

. . .

un = u1 + (n− 1)
de sorte que 1+ n− 1= n aussi...

Il vient donc :

un = u1 + (n− 1)

= 1+ n− 1

= n

Conclusion : un = n.
2. On définit vn =

∑n
i=1 ui pour n ⩾ 1.

Rappel : vn =
∑n

i=1 ui = u1 + u2 + u3 + · · ·+ un−1 + un.

La condition initiale est v1 =
∑1

i=1 ui = u1 = 1.

Déterminons vn : si un = n, alors ui = i donc

vn =
n
∑

i=1

ui

=
n
∑

i=1

i

= 1+ 2+ 3+ · · ·+ n

=
n(n+ 1)

2

Exercice 90
Soit la suite de terme général un = ρun−1 pour n ⩾ 1 avec la condition initiale u0 = 1 et 0< ρ < 1.

1. Donner une expression de un en fonction du rang n et de sa condition initiale.

2. Montrer que un tend vers 0 quand n tend vers l’infini en établissant que l’on peut rendre
arbitrairement petite la distance entre un et 0 à partir du moment où n est assez grand.

3. Dans le cas où la suite admet une limite, combien d’itérations faut-il pour réduire de moitié la
distance à la limite ?
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4. Montrer que la suite diverge si ρ > 1.

Correction :
On a u1 = ρ, u2 = ρu1 = ρ2, u3 = ρu2 = ρ3, . . .

En comparant l’indice de la suite et l’exposant sur ρ, on devine que un = ρn.

On montre facilement qui cela est vrai alors on doit avoir un+1 = ρn+1 (de sorte que le terme
général postulé pour un est vrai pour tout n) :

un+1 = ρun = ρρ
n = ρn+1

On a donc bien un = ρn pour tout entier naturel n.

Pour tout ϵ > 0 on a :
|un − 0|= |ρn|< ϵ

⇔ ρn < ϵ, carρ est positif

⇔ n lnρ < lnϵ, car le logarithme est une fonction croissante

⇔ n>
lnϵ
lnρ

, car lnρ est négatif

Ainsi, ∀ϵ > 0, |un − 0|< ϵ dès lors que n> N(ϵ) = lnϵ
lnρ . Il faut aller chercher des n d’autant plus

grands que ϵ est petit ou ρ proche de 1 (le processus est plus persistant, voir la question suivante).
3. Combien d’itérations faut-il pour réduire de moitié la distance à la limite? Cela revient à se
demander, partant de u0 = 1, pour quelle valeur de n on a un =

1
1 , c’est-à-dire :

ρn =
1
2

ou encore :
n lnρ = − ln 2

et donc :

n= −
ln 2
lnρ

> 1

Il faut plus d’itérations si ρ est plus proche de 1, dans ce cas on dit que le processus est plus
persistant.

Le nombre d’itération nécessaires est indépendant de la condition initiale.

→ Pour que um soit égal à la moitié de un il faut et il suffit que m− n soit égal à − ln2
lnρ .

4. La suite diverge vers +∞ si ρ > 1. Pour toutA > 0 on peut montrer qu’il existe un rang N tel
que pour tout n> N on ait un >A .

un >A ⇔ ρn >A ⇔ n lnρ > lnA ⇔ n>
lnA
lnρ
≡ N

Conformément à l’intuition, on note que le rang N est d’autant plus petit que ρ est grand (c’est-
à-dire que un croît vite, puisque le taux de croissance de un est 100

�

un
un−1
− 1
�

= 100(ρ − 1) en
pourcentage).

Exercice 91
Soit la suite de terme général un =

n+2
n . Montrer que cette suite a pour limite 1.

Correction :
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n 1 2 3 4 . . .
un 3 2 5

3
2
2 . . .

Cette suite est monotone décroissance, en effet un+1 − un < 0 pour tout n :

un+1 − un =
n+ 3
n+ 1

−
n+ 2

n
=

n(n+ 3)− (n+ 1)(n+ 2)
n(n+ 1)

= −
2

n(n+ 1)
< 0

On montre que limn→∞ un = 1 en montrant que pour tout ϵ > 0 il existe un rang N tel que pour
tout n> N on ait |un−1|< ϵ (à partir d’un certain rang la suite se rapproche arbitrairement de 1).

Nous avons |un − 1|=
�

�

n+2
n − 1
�

�= 2
n , et donc :

|un − 1|< ϵ⇔
2
n
< ϵ⇔ n>

2
ϵ
≡ N

Exercice 92
Quel est le comportement asymptotique de la suite de terme général un = −n.

Correction :
Cette suite diverge vers −∞.

Pour le montrer, il suffit d’établir que l’on peut rendre arbitrairement petit un (vers −∞) dès lors
que l’indice n est assez grand.

Il faut montrer que ∀A > 0, ∃N ∈ N tel que un < −A pour tout n> N .

un < −A ⇔−n< −A ⇔ n>A ≡ N

Exercice 93
Soit la suite de terme général un =

(−1)n+1

n2 . Montrer que cette suite admet 0 pour limite.

Correction :
Il s’agit d’une suite alternée (non monotone) à cause de la puissance sur −1.

On a |un − 0|=
�

�

�

(−1)n+1

n2

�

�

�= 1
n2 .

Soit ϵ > 0 une constante arbitrairement petite.

On a :

|un − 0|< ϵ⇔
1
n2
< ϵ⇔ n>

1
p
ϵ
≡ N

Ainsi, pour tout ϵ > 0, si n est plus grand que le rang N(ϵ) = 1p
ϵ

alors |un − 0|< ϵ.

On peut rendre un arbitrairement proche de 0 à partir du moment où n est assez grand.

Exercice 94
Soit la suite (un) ∈Q définie par :

un =
un−1

2
+

1
un−1

avec u1 = 2. (1) Donner les premiers termes de la suite. (2) Montrer que la suite est inférieurement
bornée par

p
2. (3) Calculer le point fixe de la suite. (4) Montrer que la suite est monotone
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décroissante. (5) Conclure sur le comportement asymptotique, la limite de la suite est-elle dans
Q? (6) Montrer que un+1 −

p
2< 1

2

�

un −
p

2
�

et en déduire que un −
p

2<
p

2(
p

2−1)
2n .

Correction :
1.

n 1 2 3 4 . . .
un 2 3

2
17
12

577
408 . . .

un 2 1,5 1,4166667 1,4142157 . . .

2. On peut écrire un+1 ⩾
p

2 de façon équivalente sous la forme :
un

2
+

1
un

⩾
p

2

⇔
u2

n + 2

2un
⩾
p

2

⇔ u2
n − 2un

p
2+ 2 ⩾ 0

⇔
�

un −
p

2
�2

⩾ 0
Le carré d’un nombre réel ne peut être négatif, cette inégalité est donc nécessairement vérifiée et
un+1 est donc forcément supérieur ou égal à

p
2.

3. Un point fixe de la suite est une valeur réelle ū telle que :

ū=
ū
2
+

1
ū

En toute généralité une suite peut admettre plus d’un point fixe.

Ici il existe un unique point fixe. On a :

ū2 =
ū2

2
+ 1

ū2

2
= 1

ū2 = 2
4. Comme la suite est positive (puisque un ⩾

p
2), il existe une unique solution pour ū :

ū=
p

2

5. Pour montrer que la suite est décroissante, il faut montrer que les variations sont négatives pour
tout n.

On a des équivalences suivantes :
un+1 − un ⩽ 0

⇔
1
un
−

un

2
⩽ 0

⇔
2− u2

n

2un
⩽ 0

La dernière inégalité est vraie puisque un ⩾
p

2, on a donc bien un+1 ⩽ un pour tout n (l’inégalité
est stricte tant que un >

p
2).

La suite est donc monotone décroissante.
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6. La suite un est décroissante et bornée.

La suite un est donc convergente.

On a limn→∞ un =
p

2.

La suite un est à valeurs dans Q, mais sa limite n’appartient pas à Q (
p

2 est un nombre irrationnel).
7. Pour montrer l’inégalité demandée en (6), on a les équivalences suivantes :

un+1 −
p

2<
1
2

�

un −
p

2
�

⇔ 2
�

un

2
+

1
un
−
p

2
�

< un −
p

2

⇔ un +
2
un
− 2
p

2< un −
p

2

⇔
2
un
<
p

2

⇔ un >
p

2
Cette dernière inégalité est vraie, puisque

p
2 est un minorant de la suite, donc la première

inégalité est vraie.

En itérant sur l’inégalité, on obtient :

un −
p

2<
1
2

�

un−1 −
p

2
�

<
1
22

�

un−2 −
p

2
�

< . . . . . .<
1
2n

�

u0 −
p

2
�

On a donc bien :

0< un −
p

2<
1
2n

�

u0 −
p

2
�

=
p

2(
p

2− 1)
2n

On voit donc qu’il est possible de rendre |un −
p

2| arbitrairement petit à partir du moment où n
est assez grand.

Entraînement

Exercice 95
Pour la suite géométrique u de raison

p
2 et u2 = 5, le terme u10 est égal à :

A. 80
p

2 B. 160 C. 80.

Exercice 96
La suite u est telle que : ∀n ∈ N, u0 = 1 et un+1 = 2n un. un est égal à :

A. 2n2
B. 2

n(n−1)
2 C. 2

n(n+1)
2 .

Exercice 97
∀n ∈ N∗, un = 1+ (0.1) + · · ·+ (0.1)n. La suite un converge vers :

A. 10/9 B. 9/10 C. 11/10.

Exercice 98
La suite u est géométrique, de raison q > 0 et de premier terme u0 > 0. La suite v = ln u est :
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A. géométrique de raison eq B. arithmétique de raison q C. arithmétique de raison ln q.

Exercice 99
Soit la suite u définie sur n ∈ N par :

un+2 =
5
4

un+1 −
1
4

un

u0 = 1, u1 = 2

1. Soit la suite v de terme général vn = un+1−un. Montrer que v est une suite géométrique. Calculer
vn en fonction de n.

2. En déduire un en fonction de n. La suite u est-elle convergente?

3. Déterminer le rang p à partir duquel :
�

�

�

�

un −
7
3

�

�

�

�

⩽ 10−6

Exercice 100
Un agent place un montant de 2 000 euros au taux de 5% l’an. De plus, il ajoute 500 euros tous
les ans.

1. Ecrire l’équation de récurrence correspondante.

2. L’écrire sous forme générale.

3. Quelle est la condition initiale ?

4. Quel est le montant à l’issue de 10 ans ?

5. Au bout de combien de temps le capital double-t-il ?

Exercice 101
Sur un marché la demande pour un bien à la date t est linéaire par rapport au prix du bien :

D(pt) : qt = a− b pt

où a et b sont deux paramètres réels strictement positifs. Sur le même marché, la quantité offerte
à la date t dépend du prix à la date t − 1 :

S(pt−1) : qt = c + d pt−1

où c et d sont deux paramètres réels positifs. Les offreurs utilisent le prix de la date précédente
pour anticiper le prix aujourd’hui : on dit qu’ils ont des anticipations naïves.

1. Montrer que la quantité offerte est égale à la quantité demandée si et seulement si le prix à la
date t est donné par :

pt =
a− c

b
−

d
b

pt−1

2. Calculer le point fixe p⋆ (ou état stationnaire) de cette équation de récurrence pour le prix.
Quelle hypothèse faut-il poser sur les paramètres pour que ce prix ait un sens ?

3. Montrer que p⋆ est le prix d’équilibre sur ce marché. Calculer la quantité échangée à l’équilibre.

4. Calculer le prix à la t.

5. Donner la condition sous laquelle le prix converge vers p⋆. Commenter. La convergence est-elle
monotone ?
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Exercice 102
Sur un marché, l’offre et la demande sont caractérisées par :

S(p) : q = 1+ p

D(p) : q = 2− p

1. Calculer le prix d’équilibre p⋆ et les quantités échangées à l’équilibre, q⋆.

2. Supposons que le marché ne soit pas équilibré. On admet que dans une situation de déséquilibre,
le prix augmente la demande est supérieure à l’offre (demande excédentaire positive). Plus
formellement on admet que le prix est mis à jour à l’aide de la récurrence suivante :

pt+1 = pt +α(D(pt)− S(pt))

Déterminer le point fixe de cette récurrence, c’est-à-dire le prix p tel que p = p+α(D(p)−S(p)).
Comparer p et p⋆.

3. Supposons que le prix initial p1 soit différent de p. Exprimer pt en fonction de p0 et α.

4. Montrer que la chronique de prix converge de façon monotone vers p si 0< α < 1
2 .

5. Quelles sont les prédictions du modèle si α est en dehors de cet intervalle ?

Chapitre 8

TD

Exercice 103
Soit la fonction f (x1, x2) = 2x2

1 + 5x2
2 − 4x1 x2 + 6x2 + 4.

1. Résoudre le système des conditions du premier ordre










∂ f (x1, x2)
∂ x1

= 0

∂ f (x1, x2)
∂ x2

= 0

pour déterminer un extremum possible.

2. Calculer la matrice hessienne

H =









∂ 2 f (x1, x2)
∂ x2

1

∂ 2 f (x1, x2)
∂ x1∂ x2

∂ 2 f (x1, x2)
∂ x2∂ x1

∂ 2 f (x1, x2)
∂ x2

2









en le point candidat trouvé à la question précédente (si nécessaire).

3. Calculer les mineurs de la matrice hessienne. Le point candidat est-il un maximum? Un mini-
mum ?

Correction : 1. Commençons par dériver partiellement la fonction :














∂ f (x1, x2)
∂ x1

=
∂ (2x2

1 + 5x2
2 − 4x1 x2 + 6x2 + 4)

∂ x1
= 4x1 − 4x2

∂ f (x1, x2)
∂ x2

=
∂ (2x2

1 + 5x2
2 − 4x1 x2 + 6x2 + 4)

∂ x2
= 10x2 − 4x1 + 6
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La (les) solutions annulent simultanément les dérivées partielles premières :

¨

4x⋆1 − 4x⋆2 = 0

10x⋆2 − 4x⋆1 + 6= 0

C’est un système de 2 équations à 2 inconnues à résoudre. En sommant les 2 équations pour
éliminer 4x⋆1, on a :

10x⋆2 − 4x⋆2 + 6= 0⇔ 6x⋆2 = −6⇔ x⋆2 = −1

On réinjecte dans une des deux équations. Il vient :

4x⋆1 − 4×−1= 0⇔ 4x⋆1 = −4⇔ x⋆1 = −1

Un point candidat est donc (x⋆1, x⋆2) = (−1,−1).
2.

H =









∂ 2 f (x1, x2)
∂ x2

1

∂ 2 f (x1, x2)
∂ x1∂ x2

∂ 2 f (x1, x2)
∂ x2∂ x1

∂ 2 f (x1, x2)
∂ x2

2









∂ 2 f (x1, x2)
∂ x2

1

=
∂

�

∂ f (x1, x2)
∂ x1

�

∂ x1
=
∂ (4x1 − 4x2)

∂ x1
= 4

∂ 2 f (x1, x2)
∂ x1∂ x2

=
∂

�

∂ f (x1, x2)
∂ x1

�

∂ x2
=
∂ (4x1 − 4x2)

∂ x2
= −4

∂ 2 f (x1, x2)
∂ x2

2

=
∂

�

∂ f (x1, x2)
∂ x2

�

∂ x2
=
∂ (10x2 − 4x1 + 6)

∂ x2
= 10

3.

H =

�

4 −4
−4 10

�

Le premier mineur = 4> 0. On joue donc pour un minimum global.

Le second mineur est le déterminant de H : donc 4× 10− (−4)(−4) = 24> 0.

Tous les mineurs étant positifs, on est bien à un minimum global.

Exercice 104
Soit un consommateur qui envisage d’acquérir les quantités x1 et x2 de biens 1 et 2 (dont les prix
respectifs sont p1 et p2), qui dispose d’un revenu R et dont la fonction d’utilité est U(x1, x2) = x1 x2.

1. Ecrire la contrainte budgétaire du consommateur.

2. Ecrire le programme du consommateur.
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3. En se plaçant à l’optimum, ré-écrire le programme par substitution.

4. Le résoudre.

Correction :
1. La contrainte budgétaire est forcément saturée si l’agent est rationnel : l’argent non dépensé ne
sert pas à la consommation. L’utiliser pourrait permettre de consommer plus et donc d’augmenter
la satisfaction.

p1 x1 + p2 x2 = R

On a notre contrainte linéaire. Comme on a une relation entre x1 et x2, isolons x2 :

x2 =
R
p2
−

p1

p2
x1

2.3. On va transformer la fonction d’utilité à maximiser pour la rendre plus facile à manipuler.
Prenons par exemple : v = ln u. C’est une transformation croissante donc cela ne change pas la
solution du problème.

v = ln u(x1; x2) = ln (x1 x2)

= ln (x1) + ln (x2)

On va procéder par substitution. On remplace x2 dans l’objectif :

v = ln (x1) + ln (x2)

= ln (x1) + ln
�

R− p1 x1

p2

�

= ln (x1) + ln (R− p1 x1)− ln (p2)

Le programme de maximisation d’une fonction à 2 variables sous contrainte peut donc se
réécrire comme un programme de maximisation d’une fonction à 1 variable SANS contrainte :

(

max
(x1;x2)

x1 x2

sc : p1 x1 + p2 x2 ⩽ R
⇔ max

x1

{ln (x1) + ln (R− p1 x1)− ln (p2)}
︸ ︷︷ ︸

=v(x1)

4. On résoud : on écrit la Condition du Premier Ordre (CPO) :

dv
d x1

=
d {ln (x1) + ln (R− p1 x1)− ln (p2)}

d x1

=
d {ln (x1)}

d x1
+

d {ln (R− p1 x1)}
d x1

−
d {ln (p2)}

d x1

=
1
x1
+
−p1

R− p1 x1
− 0

=
1
x1
−

p1

R− p1 x1

En la solution x1 = x⋆1, la dérivée première est nulle :
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dv
d x1
(x⋆1) = 0⇔

1
x⋆1
−

p1

R− p1 x⋆1
= 0

⇔
1
x⋆1
=

p1

R− p1 x⋆1
⇔ R− p1 x⋆1 = p1 x⋆1
⇔ R= 2p1 x⋆1

⇔ x⋆1 =
R

2p1

On sait que :

x2 =
R
p2
−

p1

p2
x1⇔ x⋆2 =

R
p2
−

p1

p2
x⋆1

⇔ x⋆2 =
R
p2
−

p1

p2

R
2p1

⇔ x⋆2 =
R
p2
−

R
2p2

⇔ x⋆2 =
2R
2p2
−

R
2p2

⇔ x⋆2 =
R

2p2

La décision optimale du consommateur est le panier de biens E⋆ =
�

x⋆1 =
R

2p1
; x⋆2 =

R
2p2

�

.

On sait qu’on a trouvé la bonne solution parce que la décision du consommateur s’exprime en
fonction des variables exogènes du problème R, p1 et p2.

Entraînement

Exercice 105
Soit un échantillon de taille N . Soit la droite de régression yi = a+ bx i + ei. On veut estimer les
valeurs de a et de b par la méthode des Moindres Carrés Ordinaires. Pour cela, il faut résoudre le
programme de minimisation suivant : min

a,b

∑N
i=1 e2

i .

1. Ecrire les dérivées partielles du problème en fonction de a et de b.

2. Les conditions du premier ordre s’annulent en les solutions ba et bb. Résoudre le système de deux
équations à deux inconnues par substitution.

3. Construire la matrice hessienne (la matrice des dérivées partielles au second ordre du problème
en fonction de a et de b).

4. Montrez qu’on est bien à un minimum.

Exercice 106
Soit une suite de n variables aléatoires (X1, X2, . . . , Xn) identiquement et indépendamment distri-

buées selon une loi normale N (m,σ2) de densité de probabilités φ(x) =
1

p
2πσ2

e
−
(x −m)2

2σ2 . On
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veut estimer les paramètres m et σ2 en résolvant le programme du maximum de vraisemblance :
max
m,σ2

�∑n
i=1 lnφ(x i)
	

.

1. Ecrire les CPO et montrer que Òm= X et bσ2 =

∑n
i=1(X i − X )2

n
.

2. Construire la matrice hessienne en la solution trouvée.

3. Montrer qu’on est bien à un maximum.
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